Acta Optica Sinica, Volume. 43, Issue 15, 1500002(2023)

Developments of Multimodal Image-Guided Surgical Navigation

Jian Yang1,2, Yuanyuan Wang1,2, Danni Ai1,2, Hong Song3, Jingfan Fan1,2, Tianyu Fu4, Deqiang Xiao1,2, Long Shao3, Ying Gu5、**, and Yongtian Wang1,2、*
Author Affiliations
  • 1School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
  • 2Laboratory of Beijing Engineering Research Center of Mixed Reality and Advanced Display, Beijing 100081, China
  • 3School of Computer Science, Beijing Institute of Technology, Beijing 100081, China
  • 4School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
  • 5Department of Laser Medicine, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
  • show less
    References(115)

    [1] Su H, Kwok K W, Cleary K et al. State of the art and future opportunities in MRI-guided robot-assisted surgery and interventions[J]. Proceedings of the IEEE, 110, 968-992(2022).

    [2] Forner A, Reig M, Bruix J. Hepatocellular carcinoma[J]. Lancet, 391, 1301-1314(2018).

    [3] Wright J. Surgery: the eyes of the operation[J]. Nature, 502, S88-S89(2013).

    [4] Kang T W, Rhim H. Recent advances in tumor ablation for hepatocellular carcinoma[J]. Liver Cancer, 4, 176-187(2015).

    [5] Zhu M L, Chen Z, Yuan Y X. DSI-net: deep synergistic interaction network for joint classification and segmentation with endoscope images[J]. IEEE Transactions on Medical Imaging, 40, 3315-3325(2021).

    [6] Ji X, Feng M, Treb K et al. Development of an integrated C-arm interventional imaging system with a strip photon counting detector and a flat panel detector[J]. IEEE Transactions on Medical Imaging, 40, 3674-3685(2021).

    [7] Hu J, Luo Z W, Wang X et al. End-to-end multimodal image registration via reinforcement learning[J]. Medical Image Analysis, 68, 101878(2021).

    [8] Kochanski R B, Lombardi J M, Laratta J L et al. Image-guided navigation and robotics in spine surgery[J]. Neurosurgery, 84, 1179-1189(2019).

    [9] Tao C N, Zheng Z R. Augmented reality computational spectral imaging for surgical guidance[J]. Laser & Optoelectronics Progress, 59, 2011014(2022).

    [10] Zhu J J, Li H, Ai D N et al. Iterative closest graph matching for non-rigid 3D/2D coronary arteries registration[J]. Computer Methods and Programs in Biomedicine, 199, 105901(2021).

    [11] Ambrosini P, Smal I, Ruijters D et al. A hidden Markov model for 3D catheter tip tracking with 2D X-ray catheterization sequence and 3D rotational angiography[J]. IEEE Transactions on Medical Imaging, 36, 757-768(2017).

    [12] Matl S, Brosig R, Baust M et al. Vascular image registration techniques: a living review[J]. Medical Image Analysis, 35, 1-17(2017).

    [13] Rodríguez E, Kypson A P, Moten S C et al. Robotic mitral surgery at East Carolina University: a 6 year experience[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 2, 211-215(2006).

    [14] Ishizawa T, Fukushima N, Shibahara J et al. Real-time identification of liver cancers by using indocyanine green fluorescent imaging[J]. Cancer, 115, 2491-2504(2009).

    [15] Miyata A, Ishizawa T, Tani K et al. Reappraisal of a dye-staining technique for anatomic hepatectomy by the concomitant use of indocyanine green fluorescence imaging[J]. Journal of the American College of Surgeons, 221, e27-e36(2015).

    [16] Chen D F, Ren J, Wang Y et al. Intraoperative monitoring of blood perfusion in port wine stains by laser Doppler imaging during vascular targeted photodynamic therapy: a preliminary study[J]. Photodiagnosis and Photodynamic Therapy, 14, 142-151(2016).

    [17] Wang Y, Xu Y X, Guo X H et al. Enhanced antimicrobial activity through the combination of antimicrobial photodynamic therapy and low-frequency ultrasonic irradiation[J]. Advanced Drug Delivery Reviews, 183, 114168(2022).

    [18] Herregodts S, Verhaeghe M, De Coninck B et al. An improved method for assessing the technical accuracy of optical tracking systems for orthopaedic surgical navigation[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 17, e2285(2021).

    [19] Burström G, Nachabe R, Homan R et al. Frameless patient tracking with adhesive optical skin markers for augmented reality surgical navigation in spine surgery[J]. Spine, 45, 1598-1604(2020).

    [20] Saeidi H, Ge J, Kam M et al. Supervised autonomous electrosurgery via biocompatible near-infrared tissue tracking techniques[J]. IEEE Transactions on Medical Robotics and Bionics, 1, 228-236(2019).

    [21] Sheinker A, Moldwin M B. Adaptive interference cancelation using a pair of magnetometers[J]. IEEE Transactions on Aerospace and Electronic Systems, 52, 307-318(2016).

    [22] Marmulla R, Lüth T, Mühling J et al. Markerless laser registration in image-guided oral and maxillofacial surgery[J]. Journal of Oral and Maxillofacial Surgery, 62, 845-851(2004).

    [23] Ledderose G J, Stelter K, Leunig A et al. Surface laser registration in ENT-surgery: accuracy in the paranasal sinuses-a cadaveric study[J]. Rhinology, 45, 281-285(2007).

    [24] Marmulla R, Eggers G, Mühling J. Laser surface registration for lateral skull base surgery[J]. Min-Minimally Invasive Neurosurgery, 48, 181-185(2005).

    [25] Malham G M, Munday N R. Comparison of novel machine vision spinal image guidance system with existing 3D fluoroscopy-based navigation system: a randomized prospective study[J]. The Spine Journal, 22, 561-569(2022).

    [26] Li W J, Fan J F, Li S W et al. Calibrating 3D scanner in the coordinate system of optical tracker for image-to-patient registration[J]. Frontiers in Neurorobotics, 15, 636772(2021).

    [27] Chen L, Zhang F F, Zhan W et al. Research on the accuracy of three-dimensional localization and navigation in robot-assisted spine surgery[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 16, e2071(2020).

    [28] Swank M L, Alkire M, Conditt M et al. Technology and cost-effectiveness in knee arthroplasty: computer navigation and robotics[J]. American Journal of Orthopedics, 38, 32-36(2009).

    [29] Zhou G, Chen X Q, Niu B L et al. Intraoperative localization of small pulmonary nodules to assist surgical resection: a novel approach using a surgical navigation puncture robot system[J]. Thoracic Cancer, 11, 72-81(2020).

    [30] Bonatti J, Vetrovec G, Riga C L et al. Robotic technology in cardiovascular medicine[J]. Nature Reviews Cardiology, 11, 266-275(2014).

    [31] Jeon S, Hoshiar A K, Kim K et al. A magnetically controlled soft microrobot steering a guidewire in a three-dimensional phantom vascular network[J]. Soft Robotics, 6, 54-68(2019).

    [32] Kim Y, Parada G A, Liu S D et al. Ferromagnetic soft continuum robots[J]. Science Robotics, 4, eaax7329(2019).

    [33] Jeong S, Choi H, Go G et al. Feasibility study on magnetically steerable guidewire device for percutaneous coronary intervention[J]. International Journal of Control, Automation and Systems, 15, 473-479(2017).

    [34] Zhang S X, Yin M, Lai Z Y et al. Design and characteristics of 3D magnetically steerable guidewire system for minimally invasive surgery[J]. IEEE Robotics and Automation Letters, 7, 4040-4046(2022).

    [35] Kyriakides Y. Accuracy assessment of a novel optical image guided system for trans-nasal sinus and skull base surgeries[J]. International Bulletin of Otorhinolaryngology, 16, 41(2020).

    [36] Trope M, Shamir R R, Joskowicz L et al. The role of automatic computer-aided surgical trajectory planning in improving the expected safety of stereotactic neurosurgery[J]. International Journal of Computer Assisted Radiology and Surgery, 10, 1127-1140(2015).

    [37] Cong W J, Yang J A, Ai D N et al. Quantitative analysis of deformable model based 3-D reconstruction of coronary artery from multiple angiograms[J]. IEEE Transactions on Biomedical Engineering, 62, 2079-2090(2015).

    [38] Seitel A, Engel M, Sommer C M et al. Computer-assisted trajectory planning for percutaneous needle insertions[J]. Medical Physics, 38, 3246-3259(2011).

    [39] Fu T Y, Yang J, Li Q et al. Groupwise registration with global-local graph shrinkage in atlas construction[J]. Medical Image Analysis, 64, 101711(2020).

    [40] Song S, Yang J, Ai D N et al. Patch-based adaptive background subtraction for vascular enhancement in X-ray cineangiograms[J]. IEEE Journal of Biomedical and Health Informatics, 23, 2563-2575(2019).

    [41] Azzopardi G, Strisciuglio N, Vento M et al. Trainable COSFIRE filters for vessel delineation with application to retinal images[J]. Medical Image Analysis, 19, 46-57(2015).

    [42] Li Y L, Zhou S J, Wu J H et al. A novel method of vessel segmentation for X-ray coronary angiography images[C], 468-471(2012).

    [43] Hernandez-Vela A, Gatta C, Escalera S et al. Accurate coronary centerline extraction, caliber estimation, and catheter detection in angiographies[J]. IEEE Transactions on Information Technology in Biomedicine, 16, 1332-1340(2012).

    [44] Liu T, Tai Y H, Zhao C M et al. Augmented reality in neurosurgical navigation: a survey[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 16, 1-20(2020).

    [45] Minaee S, Minaei M, Abdolrashidi A. Deep-emotion: facial expression recognition using attentional convolutional network[J]. Sensors, 21, 3046(2021).

    [46] Chen L C, Papandreou G, Kokkinos I et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs[J]. arXiv preprint(2014).

    [47] Wang J C, Shu Y C, Lin C Y et al. Application of deep learning algorithms in automatic sonographic localization and segmentation of the Median nerve: a systematic review and meta-analysis[J]. Artificial Intelligence in Medicine, 137, 102496(2023).

    [48] Alqazzaz S, Sun X, Yang X et al. Automated brain tumor segmentation on multi-modal MR image using SegNet[J]. Computer Vision and Image Understanding, 5, 209-219(2019).

    [49] Christ P F, Elshaer M E A, Ettlinger F et al. Automatic liver and lesion segmentation in CT using cascaded fully convolutional neural networks and 3D conditional random fields[M]. Ourselin S, Joskowicz L, Sabuncu M R, et al. Medical image computing and computer-assisted intervention-MICCAI 2016. Lecture notes in computer science, 9901, 415-423(2016).

    [50] Chen L C, Papandreou G, Kokkinos I et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40, 834-848(2018).

    [51] Badrinarayanan V, Kendall A, Cipolla R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 2481-2495(2017).

    [52] Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation[M]. Navab N, Hornegger J, Wells W M, et al. Medical image computing and computer-assisted intervention-MICCAI 2015. Lecture notes in computer science, 9351, 234-241(2015).

    [53] Isensee F, Jaeger P F, Kohl S A A et al. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation[J]. Nature Methods, 18, 203-211(2021).

    [54] Zhou Z W, Siddiquee M M R, Tajbakhsh N et al. UNet++: a nested U-net architecture for medical image segmentation[M]. Stoyanov D, Taylor Z, Carneiro G, et al. Deep learning in medical image analysis and multimodal learning for clinical decision support. Lecture notes in computer science, 11045, 3-11(2018).

    [55] Alamir M, Alghamdi M. The role of generative adversarial network in medical image analysis: an In-depth survey[J]. ACM Computing Surveys, 55, 96(2022).

    [56] Xue Y, Xu T, Zhang H et al. SegAN: adversarial network with multi-scale L1 loss for medical image segmentation[J]. Neuroinformatics, 16, 383-392(2018).

    [57] Dai W, Dong N Q, Wang Z Y et al. SCAN: structure correcting adversarial network for organ segmentation in chest X-rays[M]. Stoyanov D, Taylor Z, Carneiro G, et al. Deep learning in medical image analysis and multimodal learning for clinical decision support. Lecture notes in computer science, 11045, 263-273(2018).

    [58] Dai Z Y, Yang R Q, Hang F et al. Neurosurgical craniotomy localization using interactive 3D lesion mapping for image-guided neurosurgery[J]. IEEE Access, 7, 10606-10616(2019).

    [59] Hu W R, Jiang H Y, Wang M. Flexible needle puncture path planning for liver tumors based on deep reinforcement learning[J]. Physics in Medicine & Biology, 67, 195008(2022).

    [60] Luo M, Jiang H Y, Shi T Y. Multi-stage puncture path planning algorithm of ablation needles for percutaneous radiofrequency ablation of liver tumors[J]. Computers in Biology and Medicine, 145, 105506(2022).

    [61] Shatrov J, Parker D. Computer and robotic-assisted total knee arthroplasty: a review of outcomes[J]. Journal of Experimental Orthopaedics, 7, 70(2020).

    [62] Hafez M A, Chelule K L, Seedhom B B et al. Computer-assisted total knee arthroplasty using patient-specific templating[J]. Clinical Orthopaedics & Related Research, 444, 184-192(2006).

    [63] Xiao D Q, Wang L, Deng H et al. Estimating reference bony shape model for personalized surgical reconstruction of posttraumatic facial defects[M]. Shen D G, Liu T M, Peters T M, et al. Medical image computing and computer assisted intervention-MICCAI 2019. Lecture notes in computer science, 11768, 327-335(2019).

    [64] Xiao D Q, Deng H, Lian C F et al. Unsupervised learning of reference bony shapes for orthognathic surgical planning with a surface deformation network[J]. Medical Physics, 48, 7735-7746(2021).

    [65] Xiao D Q, Lian C F, Deng H et al. Estimating reference bony shape models for orthognathic surgical planning using 3D point-cloud deep learning[J]. IEEE Journal of Biomedical and Health Informatics, 25, 2958-2966(2021).

    [66] Liu S Y, Fan J F, Song D P et al. Joint estimation of depth and motion from a monocular endoscopy image sequence using a multi-loss rebalancing network[J]. Biomedical Optics Express, 13, 2707(2022).

    [67] Yu T, Zheng S A, Zhang X W et al. A novel computer navigation method for accurate percutaneous sacroiliac screw implantation[J]. Medicine, 98, e14548(2019).

    [68] Gupta S, Gupta P, Verma V S. Study on anatomical and functional medical image registration methods[J]. Neurocomputing, 452, 534-548(2021).

    [69] Fan J F, Yang J, Zhao Y T et al. Convex hull aided registration method (CHARM)[J]. IEEE Transactions on Visualization and Computer Graphics, 23, 2042-2055(2017).

    [70] Sengupta D, Gupta P, Biswas A. A survey on mutual information based medical image registration algorithms[J]. Neurocomputing, 486, 174-188(2022).

    [71] Chu Y K, Yang J, Ma S D et al. Registration and fusion quantification of augmented reality based nasal endoscopic surgery[J]. Medical Image Analysis, 42, 241-256(2017).

    [72] Giesel F L, Mehndiratta A, Locklin J et al. Image fusion using CT, MRI and PET for treatment planning, navigation and follow up in percutaneous RFA[J]. Experimental Oncology, 31, 106-114(2009).

    [73] Sundar H, Shen D G, Biros G et al. Robust computation of mutual information using spatially adaptive meshes[M]. Ayache N, Ourselin S, Maeder A. Medical image computing and computer-assisted intervention-MICCAI 2007. Lecture notes in computer science, 4791, 950-958(2007).

    [74] Fu T Y, Fan J F, Liu D K et al. Divergence-free fitting-based incompressible deformation quantification of liver[J]. IEEE Journal of Biomedical and Health Informatics, 25, 720-736(2021).

    [75] Sentker T, Madesta F, Werner R. GDL-FIRE4D: deep learning-based fast 4D CT image registration[M]. Frangi A F, Schnabel J A, Davatzikos C, et al. Medical Image Computing and Computer-Assisted Intervention-MICCAI 2018. Lecture notes in computer science, 11070, 765-773(2018).

    [76] Uzunova H, Wilms M, Handels H et al. Training CNNs for image registration from few samples with model-based data augmentation[M]. Descoteaux M, Maier-Hein L, Franz A, et al. Medical Image Computing and Computer-Assisted Intervention-MICCAI 2017. Lecture notes in computer science, 10433, 223-231(2017).

    [77] Cheng X, Zhang L, Zheng Y F. Deep similarity learning for multimodal medical images[J]. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 6, 248-252(2018).

    [78] Du B, Liao J D, Turkbey B et al. Multi-task learning for registering images with large deformation[J]. IEEE Journal of Biomedical and Health Informatics, 25, 1624-1633(2021).

    [79] Fan J F, Cao X H, Yap P T et al. BIRNet: brain image registration using dual-supervised fully convolutional networks[J]. Medical Image Analysis, 54, 193-206(2019).

    [80] Blendowski M, Bouteldja N, Heinrich M P. Multimodal 3D medical image registration guided by shape encoder-decoder networks[J]. International Journal of Computer Assisted Radiology and Surgery, 15, 269-276(2020).

    [81] Sedghi A, Luo J, Mehrtash A et al. Semi-supervised image registration using deep learning[J]. Proceedings of SPIE, 10951, 109511G(2019).

    [82] Yoo I, Hildebrand D G C, Tobin W F et al. ssEMnet: serial-section electron microscopy image registration using a spatial transformer network with learned features[M]. Cardoso M J, Arbel T, Carneiro G, et al. Deep learning in medical image analysis, international workshop on multimodal learning for clinical decision support. Lecture notes in computer science, 10553, 249-257(2017).

    [83] Lin L H, Yi J B, Cao F et al. Non-rigid registration algorithm of lung computed tomography images based on multi-scale parallel full convolution neural network[J]. Laser & Optoelectronics Progress, 59, 1617004(2022).

    [84] Zhu J J, Fan J F, Guo S A et al. Heuristic tree searching for pose-independent 3D/2D rigid registration of vessel structures[J]. Physics in Medicine & Biology, 65, 055010(2020).

    [85] Jeroen V H, Emmanuel A, Zheng G Y et al. Deep learning-based 2D/3D registration of an atlas to biplanar X-ray images[J]. International Journal of Computer Assisted Radiology and Surgery, 17, 1333-1342(2022).

    [86] Miao S, Wang Z J, Liao R. A CNN regression approach for real-time 2D/3D registration[J]. IEEE Transactions on Medical Imaging, 35, 1352-1363(2016).

    [87] Vijayan R, Sheth N, Mekki L et al. 3D–2D image registration in the presence of soft-tissue deformation in image-guided transbronchial interventions[J]. Physics in Medicine & Biology, 68, 015010(2023).

    [88] Varnavas A, Carrell T, Penney G. Fully automated 2D-3D registration and verification[J]. Medical Image Analysis, 26, 108-119(2015).

    [89] Flach B, Brehm M, Sawall S et al. Deformable 3D–2D registration for CT and its application to low dose tomographic fluoroscopy[J]. Physics in Medicine and Biology, 59, 7865-7887(2014).

    [90] Li W J, Kong D Q, Cao G G et al. 2D-3D medical image registration based on training-push understanding coupling architecture[J]. Laser & Optoelectronics Progress, 59, 1610015(2022).

    [91] Wohlhart P, Lepetit V. Learning descriptors for object recognition and 3D pose estimation[C], 3109-3118(2015).

    [92] Heinrich M P, Jenkinson M, Bhushan M et al. MIND: modality independent neighbourhood descriptor for multi-modal deformable registration[J]. Medical Image Analysis, 16, 1423-1435(2012).

    [93] Heinrich M P, Jenkinson M, Papież B W et al. Towards realtime multimodal fusion for image-guided interventions using self-similarities[M]. International conference on medical image computing and computer-assisted intervention-MICCAI 2013. Lecture notes in computer science, 8149, 187-194(2013).

    [94] Wang Y F, Fu T Y, Wu C et al. Multimodal registration of ultrasound and MR images using weighted self-similarity structure vector[J]. Computers in Biology and Medicine, 155, 106661(2023).

    [95] Wei W, Haishan X, Alpers J et al. A deep learning approach for 2D ultrasound and 3D CT/MR image registration in liver tumor ablation[J]. Computer Methods and Programs in Biomedicine, 206, 106117(2021).

    [96] Markova V, Ronchetti M, Wein W et al. Global multi-modal 2D/3D registration via local descriptors learning[M]. Wang L W, Dou Q, Fletcher P T, et al. Medical image computing and computer-assisted intervention-MICCAI 2022. Lecture notes in computer science, 13436, 269-279(2022).

    [97] Dey D, Slomka P J, Gobbi D G et al. Mixed reality merging of endoscopic images and 3-D surfaces[M]. Delp S L, DiGoia A M, Jaramaz B. Medical image computing and computer-assisted intervention-MICCAI 2000. Lecture notes in computer science, 1935, 796-803(2000).

    [98] Li W J, Fan J F, Li S W et al. Homography-based robust pose compensation and fusion imaging for augmented reality based endoscopic navigation system[J]. Computers in Biology and Medicine, 138, 104864(2021).

    [99] Suciadi L P, William Y, Jorizal P et al. Comparing lung CT in COVID-19 pneumonia and acute heart failure: an imaging conundrum[J]. Cureus, 13, e15120(2021).

    [100] Behrens A, Guski M, Stehle T et al. A non-linear multi-scale blending algorithm for fluorescence bladder images[J]. Computer Science-Research and Development, 26, 125-134(2011).

    [101] Tan W, Tiwari P, Pandey H M et al. Multimodal medical image fusion algorithm in the era of big data[J]. Neural Computing and Applications, 1-21(2020).

    [102] Higgins W E, Helferty J P, Lu K K et al. 3D CT-video fusion for image-guided bronchoscopy[J]. Computerized Medical Imaging and Graphics, 32, 159-173(2008).

    [103] Chu Y K, Li X, Yang X L et al. Perception enhancement using importance-driven hybrid rendering for augmented reality based endoscopic surgical navigation[J]. Biomedical Optics Express, 9, 5205-5226(2018).

    [104] Tarsitano A, Ricotta F, Baldino G et al. Navigation-guided resection of maxillary tumours: the accuracy of computer-assisted surgery in terms of control of resection margins-a feasibility study[J]. Journal of Cranio-Maxillofacial Surgery, 45, 2109-2114(2017).

    [105] Bolding S L, Reebye U N. Accuracy of haptic robotic guidance of dental implant surgery for completely edentulous arches[J]. The Journal of Prosthetic Dentistry, 128, 639-647(2022).

    [106] Bai S Z, Ren N, Feng Z H et al. Animal experiment on the accuracy of the Autonomous Dental Implant Robotic System[J]. Chinese Journal of Stomatology, 56, 170-174(2021).

    [107] Mathew K K, Marchand K B, Tarazi J M et al. Computer-assisted navigation in total knee arthroplasty[J]. Surgical Technology International, 36, 323-330(2020).

    [108] Jones C W, Jerabek S A. Current role of computer navigation in total knee arthroplasty[J]. The Journal of Arthroplasty, 33, 1989-1993(2018).

    [109] Shimokawa N, Takami T. Surgical safety of cervical pedicle screw placement with computer navigation system[J]. Neurosurgical Review, 40, 251-258(2017).

    [110] D'Souza M, Gendreau J, Feng A et al. Robotic-assisted spine surgery: history, efficacy, cost, and future trends[J]. Robotic Surgery (Auckland), 6, 9-23(2019).

    [111] Balboni J M, Siddique K, Nomoto E K et al. Novel use of robotics and navigation for anterior lumbar total disc replacement surgery[J]. North American Spine Society Journal, 9, 100097(2022).

    [112] Hong J, Nakashima H, Konishi K et al. Interventional navigation for abdominal therapy based on simultaneous use of MRI and ultrasound[J]. Medical and Biological Engineering and Computing, 44, 1127-1134(2006).

    [113] Krücker J, Xu S, Glossop N et al. Electromagnetic tracking for thermal ablation and biopsy guidance: clinical evaluation of spatial accuracy[J]. Journal of Vascular and Interventional Radiology, 18, 1141-1150(2007).

    [114] Zhou Y J, Xie X L, Zhou X H et al. Pyramid attention recurrent networks for real-time guidewire segmentation and tracking in intraoperative X-ray fluoroscopy[J]. Computerized Medical Imaging and Graphics, 83, 101734(2020).

    [115] Ma H, Smal I, Daemen J et al. Dynamic coronary roadmapping via catheter tip tracking in X-ray fluoroscopy with deep learning based Bayesian filtering[J]. Medical Image Analysis, 61, 101634(2020).

    Tools

    Get Citation

    Copy Citation Text

    Jian Yang, Yuanyuan Wang, Danni Ai, Hong Song, Jingfan Fan, Tianyu Fu, Deqiang Xiao, Long Shao, Ying Gu, Yongtian Wang. Developments of Multimodal Image-Guided Surgical Navigation[J]. Acta Optica Sinica, 2023, 43(15): 1500002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Mar. 29, 2023

    Accepted: Jun. 30, 2023

    Published Online: Aug. 15, 2023

    The Author Email: Gu Ying (guyinglaser301@163.com), Wang Yongtian (wyt@bit.edu.cn)

    DOI:10.3788/AOS230742

    Topics