Optics and Precision Engineering, Volume. 31, Issue 18, 2723(2023)
Joint self-attention and branch sampling for object detection on drone imagery
[1] [1] 曲优,李文辉.基于锚框变换的单阶段旋转目标检测方法[J].吉林大学学报(工学版),2022,52(01):162-173.QUY, LIW H. Single-stage rotated object detection network based on anchor transformation[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(1): 162-173.(in Chinese)
[2] [2] 李超, 黄新宇, 王凯. 基于特征融合和自学习锚框的高分辨率图像小目标检测算法[J]. 电子学报, 2022, 50(7):1684-1695. doi: 10.12263/DZXB.20200917LIC, HUANGX Y, WANGK. Small object detection of high-resolution images based on feature fusion and learnable anchor[J]. Acta Electronica Sinica, 2022, 50(7): 1684-1695.(in Chinese). doi: 10.12263/DZXB.20200917
[3] [3] 刘芳, 韩笑. 基于多尺度深度学习的自适应航拍目标检测[J]. 航空学报, 2022, 43(5):463-474. doi: 10.7527/S1000-6893.2021.25270LIUF, HANX. Adaptive aerial object detection based on multi-scale deep learning[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(5):463-474.(in Chinese). doi: 10.7527/S1000-6893.2021.25270
[4] DALAL N, TRIGGS B. Histograms of Oriented Gradients for Human Detection[C], 886-893(2005).
[5] LIENHART R, MAYDT J. An Extended Set of Haar-Like Features for Rapid Object Detection[C], I(2002).
[6] VIOLA P, JONES M. Rapid object detection using a boosted cascade of simple features[C], I(2003).
[7] [7] 林浩, 李雷孝, 王慧. 支持向量机在智能交通系统中的研究应用综述[J]. 计算机科学与探索, 2020, 14(6)901-917.XUD G, WANGL, LIF. Review of typical object detection algorithms for deep learning[J]. Computer Engineering and Applications, 2021, 57(8): 10-25.(in Chinese)
[9] [9] 张财广, 熊博莅, 匡纲要. 光学卫星遥感图像舰船目标检测综述[J]. 电波科学学报, 2020, 35(5):637-647. doi: 10.13443/j.cjors.2020040603ZHANGC G, XIONGB L, KUANGG Y. A survey of ship detection in optical satellite remote sensing images[J]. Chinese Journal of Radio Science, 2020, 35(5):637-647.(in Chinese). doi: 10.13443/j.cjors.2020040603
[10] YANG F, FAN H, CHU P et al. Clustered object detection in aerial images[C], 8310-8319(2020).
[11] YU W P, YANG T, CHEN C. Towards resolving the challenge of long-tail distribution in uav images for object detection[C], 3257-3266(2021).
[12] LIU Z M, GAO G Y, SUN L et al. HRDNet: high-resolution detection network for small objects[C], 1-6(2021).
[13] WU Z Y, SURESH K, NARAYANAN P et al. Delving into robust object detection from unmanned aerial vehicles: a deep nuisance disentanglement approach[C], 1201-1210(2020).
[14] YOUSSEF Y, ELSHENAWY M. Automatic vehicle counting and tracking in aerial video feeds using cascade region-based convolutional neural networks and feature pyramid networks[J]. Transportation Research Record: Journal of the Transportation Research Board, 2675, 304-317(2021).
[15] LI J N, LIANG X D, WEI Y C et al. Perceptual Generative Adversarial Networks for Small Object Detection[C], 1951-1959(2017).
[16] TANG Z Y, LIU X, YANG B J. PENet: object detection using points estimation in high definition aerial images[C], 392-398(2021).
[17] LAMINE MEKHALFI M, BEJIGA M B, SORESINA D et al. Capsule networks for object detection in UAV imagery[J]. Remote Sensing, 11, 1694(2019).
[18] CHEN C Y, GONG W G, CHEN Y L et al. Object detection in remote sensing images based on a scene-contextual feature pyramid network[J]. Remote Sensing, 11, 339(2019).
[19] GIRSHICK R. Fast R-CNN[C], 1440-1448(2016).
[20] REN S Q, HE K M, GIRSHICK R et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149(2017).
[24] SUN Z Q, CAO S C, YANG Y M et al. Rethinking transformer-based set prediction for object detection[C], 3591-3600(2022).
[25] DU D W, ZHU P F, WEN L Y et al. VisDrone-DET2019: the vision meets drone object detection in image challenge results[C], 213-226(2020).
[26] DU D W, QI Y K, YU H Y et al. The Unmanned Aerial Vehicle Benchmark: Object Detection and Tracking[M]. Computer Vision - ECCV 2018, 375-391(2018).
[27] CHALAVADI V, JERIPOTHULA P, DATLA R et al. mSODANet: a network for multi-scale object detection in aerial images using hierarchical dilated convolutions[J]. Pattern Recognition, 126, 108548(2022).
[28] LI C L, YANG T, ZHU S J et al. Density Map Guided Object Detection in Aerial Images[C]. WA, 737-746(2020).
[29] DENG S T, LI S, XIE K et al. A global-local self-adaptive network for drone-view object detection[J]. IEEE Transactions on Image Processing, 30, 1556-1569(2021).
[30] DUAN C Z, WEI Z W, ZHANG C et al. Coarse-grained density map guided object detection in aerial images[C], 2789-2798(2021).
[31] LENG J X, MO M, ZHOU Y H et al. Pareto refocusing for drone-view object detection[C], 1320-1334(2022).
Get Citation
Copy Citation Text
Yunzuo ZHANG, Cunyu WU, Yameng LIU, Tian ZHANG, Yuxin ZHENG. Joint self-attention and branch sampling for object detection on drone imagery[J]. Optics and Precision Engineering, 2023, 31(18): 2723
Category: Information Sciences
Received: Dec. 29, 2022
Accepted: --
Published Online: Oct. 12, 2023
The Author Email: Yunzuo ZHANG (zhangyunzuo888@sina.com)