Journal of the Chinese Ceramic Society, Volume. 52, Issue 9, 2889(2024)
Effect of Corona Poling on Piezo-Photocatalytic Performance of Barium Titanate Powders
[1] [1] LACHHEB H, PUZENAT E, HOUAS A, et al. Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania[J]. Appl Catal B Environ, 2002, 39(1): 75–90.
[2] [2] KANG Y Y, YANG Y Q, YIN L C, et al. An amorphous carbon nitride photocatalyst with greatly extended visible-light-responsive range for photocatalytic hydrogen generation[J]. Adv Mater, 2015, 27(31): 4572–4577.
[3] [3] AYUSH BAHUGNA, SINGH SK, SACHIN SHARMA, et al. Physical methods of wastewater treatment[J]. JREES, 2021, 7(6): 2348–2532.
[4] [4] LI X, ZHOU M H, PAN Y W, et al. Highly efficient advanced oxidation processes (AOPs) based on pre-magnetization Fe0 for wastewater treatment[J]. Sep Purif Technol, 2017, 178: 49–55.
[5] [5] DONG S S, DONG S S, TIAN X D, et al. Role of self-assembly coated Er(3+): YAlO3/TiO2 in intimate coupling of visible-light-responsive photocatalysis and biodegradation reactions[J]. J Hazard Mater, 2016, 302: 386–394.
[6] [6] PANKAJ R, VATIKA S, ABHINANDAN K, et al. Surface defect engineering of metal oxides photocatalyst for energy application and water treatment[J]. J Materiomics, 2020, 7(2): 388-418.
[7] [7] YU D F, LIU Z H, ZHANG J M, et al. Enhanced catalytic performance by multi-field coupling in KNbO3 nanostructures: Piezo-photocatalytic and ferro-photoelectrochemical effects[J]. Nano Energy, 2019, 58: 695–705.
[8] [8] LU L Z, LIANG N, SUN H Q, et al. Highly efficient sono-piezo-photo synergistic catalysis in bismuth layered ferroelectrics via finely distinguishing sonochemical and electromechanochemical processes[J]. J Materiomics, 2022, 8(1): 47–58.
[9] [9] SENTHILKUMAR P, JENCY D A, KAVINKUMAR T, et al. Built-in electric field assisted photocatalytic dye degradation and photoelectrochemical water splitting of ferroelectric Ce doped BaTiO3 nanoassemblies[J]. ACS Sustainable Chem Eng, 2019: Acssuschemeng.9b00679.
[10] [10] LUN MM, ZHOU XS, HU SS, et al. Ferroelectric K0.5Na0.5NbO3 catalysts for dye wastewater degradation[J]. Ceram Int, 2021, 47(20):28797–28805.
[11] [11] CUI Y F, BRISCOE J, DUNN S. Effect of ferroelectricity on solar-light-driven photocatalytic activity of BaTiO3—Influence on the carrier separation and stern layer formation[J]. Chem Mater, 2013, 25(21): 4215–4223.
[12] [12] ZHANG L, LI X, CHEN J, et al. Enhanced photocatalytic activity in ferroelectric BiFeO3 nanoparticles treated by a corona poling method[J]. Ceram Int, 2022, 48(11): 15908–15912.
[13] [13] XU H P, ZHUANG Y, FU Z Y, et al. Promoted osteogenesis by corona discharge poling induced in electroactive piezoelectric bioceramics[J]. Ceram Int, 2024, 50(1): 672–683.
[14] [14] HUI K Z, DAI F Q, GUO L M, et al. Ferroelectric-assisted charge carrier separation over Bi2MoO6 nanosheets for photocatalytic dye degradation[J]. Nanoscale, 2022, 14(39): 14661–14669.
[15] [15] PARK S, LEE C W, KANG M Y, et al. A ferroelectric photocatalyst for enhancing hydrogen evolution: Polarized particulate suspension[J]. Phys Chem Chem Phys, 2014, 16(22): 10408–10413.
[16] [16] GAUR A, DUBEY S, ELQAHTANI Z M, et al. Effect of poling on multicatalytic performance of 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Sr0.3)TiO3 ferroelectric ceramic for dye degradation[J]. Materials, 2022, 15(22): 8217.
[17] [17] WEN P H, YAO F Y, HU D W, et al. Changes in cell parameters and improvement in photocatalytic activity of KNbO3 and NaNbO3 crystals via polarization[J]. Mater Des, 2018, 158: 5–18.
[18] [18] XU Z P, QIANG H, CHEN Y, et al. Room-temperature electrocaloric effect in (1?x)Ba0.67Sr0.33TiO3–xBa0.9Ca0.1Ti0.9Zr0.1O3 ceramics under moderate electric field[J]. J Mater Sci Mater Electron, 2018, 29(9): 7227–7232.
[19] [19] WU Z Z, LIAO X H, SHI Y R, et al. The dielectric properties and relaxor behavior of gadolinium oxide modified Barium zirconate titanate ceramics for Y5V capacitor applications[J]. J Mater Sci Mater Electron, 2022, 33(36): 27110–27120.
[20] [20] JIAN X D, LU B, LI D D, et al. Large electrocaloric effect in lead-free Ba(ZrxTi1–x)O3 thick film ceramics[J]. J Alloys Compd, 2018, 742: 165–171.
[21] [21] ASHIRI R. Analysis and characterization of phase evolution of nanosized BaTiO3 powder synthesized through a chemically modified sol–gel process[J]. Metall Mater Trans A, 2012, 43(11): 4414–4426.
[22] [22] TIHTIH M, IBRAHIM J E F M, BASYOONI M A, et al. Structural, optical, and electronic properties of Barium titanate: Experiment characterisation and first-principles study[J]. Mater Technol, 2022, 37(14): 2995–3005.
[23] [23] LIU X F, XIAO L Y, ZHANG Y, et al. Significantly enhanced piezo-photocatalytic capability in BaTiO3 nanowires for degrading organic dye[J]. J Materiomics, 2020, 6(2): 256–262.
[24] [24] ZHANG K, GAO P, LIU C, et al. Structural evolution and enhanced piezoelectric activity in novel lead-free BaTiO3–Ca(Sn1/2Zr1/2)O3 solid solutions[J]. Energies, 2022, 15(20): 7795.
[25] [25] ZHANG A, LIU Z Y, GENG X H, et al. Ultrasonic vibration driven piezocatalytic activity of lead-free K0.5Na0.5NbO3 materials[J]. Ceram Int, 2019, 45(17): 22486–22492.
[26] [26] KALHORI H, AMAECHI I C, YOUSSEF A H, et al. Catalytic activity of BaTiO3 nanoparticles for wastewater treatment: Piezo- or sono-driven?[J]. ACS Appl Nano Mater, 2023, 6(3): 1686–1695.
[27] [27] CHEN C C, ZHAO W, LEI P X, et al. Photosensitized degradation of dyes in polyoxometalate solutions versus TiO2 dispersions under visible-light irradiation: Mechanistic implications[J]. Chemistry, 2004, 10(8): 1956–1965.
[28] [28] MAJEED KHAN M A, KUMAR S, AHMED J, et al. Influence of silver doping on the structure, optical and photocatalytic properties of Ag-doped BaTiO3 ceramics[J]. Mater Chem Phys, 2021, 259: 124058.
[29] [29] KAPPADAN S, GEBREAB T W, THOMAS S, et al. Tetragonal BaTiO3 nanoparticles: An efficient photocatalyst for the degradation of organic pollutants[J]. Mater Sci Semicond Process, 2016, 51: 42–47.
[30] [30] JIANG H R, ZENG C H, ZHU W, et al. Boosting cycling stability by regulating surface oxygen vacancies of LNMO by rapid calcination[J]. Nano Res, 2023, 17: 2671–2677.
[31] [31] LIAO J Y, LV X, SUN X X, et al. Boosting piezo-catalytic activity of KNN-based materials with phase boundary and defect engineering[J]. Adv Funct Mater, 2023, 33(34): 2303637.
[32] [32] YU H J, CHEN F, LI X W, et al. Synergy of ferroelectric polarization and oxygen vacancy to promote CO2 photoreduction[J]. Nat Commun, 2021, 12(1): 4594.
[33] [33] YI Q Y, LUO H, XIONG H, et al. Enhanced catalytic activity of Molar-like BaTiO3 by oxygen vacancies[J]. Ceram Int, 2023, 49(23): 39707–39718.
[34] [34] CHEN L, LI H M, WU Z, et al. Enhancement of pyroelectric catalysis of ferroelectric BaTiO3 crystal: The action mechanism of electric poling[J]. Ceram Int, 2020, 46(10): 16763–16769.
[35] [35] HA YANPING , YAO BINGHUA , CHEN YINGLONG, et al. Preparation of MoS2 hollow microspheres by template free hydrothermal method and their piezoelectric catalytic properties[J]. J Chin Ceram Soc, 2023, 51(04): 991–999.
[36] [36] WU J, QIN N, BAO D H. Effective enhancement of piezocatalytic activity of BaTiO3 nanowires under ultrasonic vibration[J]. Nano Energy, 2018, 45: 44–51.
[37] [37] TIWARI S, GAUR A, VAISH R. Sonocatalysis and Photocatalysis in Ba0.5Sr0.5TiO3 ceramics[J]. Int J Appl Ceram Technol, 2023, 20(5): 3127–3139.
[38] [38] SHARMA M, SINGH G, VAISH R. Dye degradation and bacterial disinfection using multicatalytic BaZr0.02Ti0.98O3 ceramics[J]. J Am Ceram Soc, 2020, 103(9): 4774–4784.
[39] [39] YUAN B W, WU J, QIN N, et al. Enhanced piezocatalytic performance of (Ba, Sr)TiO3 nanowires to degrade organic pollutants[J]. ACS Appl Nano Mater, 2018, 1(9): 5119–5127.
[40] [40] KUMAR P, VAISH R, SUNG T H, et al. Effect of poling on photocatalysis, piezocatalysis, and photo-piezo catalysis performance of BaBi4Ti4O15 ceramics[J]. Glob Chall, 2022, 7(2): 2200142.
[41] [41] KUJUR V S, GAUR R, GUPTA V, et al. Significantly enhanced UV-light-driven photocatalytic performance of ferroelectric (K0.5Na0.5)NbO3: Effect of corona-poling and particle size[J]. J Phys Chem Solids, 2022, 167: 110751.
[42] [42] AN Y, HE CJ, DENG CG, et al. Poling effect on optical and dielectric properties of Pr3+-doped Na0.5Bi0.5TiO3 ferroelectric single crystal[J]. Ceram Int, 2020, 46(4): 4664–4669.
[43] [43] OZAKI T, KITAGAWA S, NISHIHARA S, et al. Ferroelectric properties and nano-scaled domain structures in (1–x)BiFeO3–xBaTiO3 (0.33<x<0.50)[J]. Ferroelectrics, 2009, 385(1): 6155–6161.
[44] [44] ZHU M D, LI S Q, ZHANG H F, et al. Diffused phase transition boosted dye degradation with Ba (ZrxTi1–x)O3 solid solutions through piezoelectric effect[J]. Nano Energy, 2021, 89: 106474.
[45] [45] XIONG X R, TIAN R M, LIN X, et al. Formation and photocatalytic activity of BaTiO3 nanocubes via hydrothermal process[J]. J Nanomater, 2015, 16(1): 173.
[46] [46] WANG YUHUA, ZHAO FEI. Design and performance modulation of photocatalytic materials[J]. J Chin Ceram Soc, 2023, 51(9): 2349–2361.
[47] [47] WANG K, HAN C, LI J Q, et al. The mechanism of piezocatalysis: Energy band theory or screening charge effect?[J]. Angew Chem Int Ed Engl, 2022, 61(6): e202110429.
Get Citation
Copy Citation Text
YANG Weixue, LU Yuanzhenzi, WANG Baoyuan, WANG Bingbo, WANG Zijian, HOU Ying. Effect of Corona Poling on Piezo-Photocatalytic Performance of Barium Titanate Powders[J]. Journal of the Chinese Ceramic Society, 2024, 52(9): 2889
Category:
Received: Feb. 6, 2024
Accepted: --
Published Online: Nov. 8, 2024
The Author Email: Ying HOU (houying@ecust.edu.cn)