Infrared and Laser Engineering, Volume. 47, Issue 1, 121002(2018)

Coupling effect of bright and dark modes in THz metamaterials

Yuan Yuyang1,2、*, Zhang Huifang2, Zhang Xueqian2, Gu Jianqiang2, Hu Fangrong1,3, Xiong Xianming1,3, Zhang Wentao1,3, and Han Jiaguang1,2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(64)

    [1] [1] Pendry J B. Negative refraction makes a perfect lens [J]. Phys Rev Lett, 2000, 85(18): 3966-3969.

    [2] [2] Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292(5514): 77-79.

    [3] [3] Zhang S, Fan W, Panoiu N C, et al. Experimental demonstration of near-infrared negative-index metamaterials [J]. Phys Rev Lett, 2005, 95(13): 137404.

    [4] [4] Fang N, Lee H, Sun C, et al. Sub-diffraction-limited optical imaging with a silver superlens[J]. Science, 2005, 308(5721): 534-537.

    [5] [5] Zhang S, Xiong Y, Bartal G, et al. Magnetized plasma for reconfigurable subdiffraction imaging [J]. Phys Rev Lett, 2011, 106(24): 243901.

    [6] [6] Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields [J]. Science, 2006, 312(5781): 1780-1782.

    [7] [7] Schurig D, Mock J J, Justice B J, et al. Metamaterial electromagnetic cloak at microwave frequencies [J]. Science, 2006, 314(5801): 977-980.

    [8] [8] Li J, Pendry J B. Hiding under the carpet: a new strategy for cloaking [J]. Phys Rev Lett, 2008, 101(20): 203901.

    [9] [9] Ergin T, Stenger N, Brenner P, et al. Three-dimensional invisibility cloak at optical wavelengths [J]. Science, 2010, 328(5976): 337-339.

    [10] [10] Tao H, Landy N I, Bingham C M, et al. A metamaterial absorber for the terahertz regime: design, fabrication and characterization [J]. Opt Express, 2008, 16(10): 7181-7188.

    [11] [11] Liu N, Mesch M, Weiss T, et al. Infrared perfect absorber and its application as plasmonic sensor [J]. Nano Lett, 2010, 10(7): 2342-2348.

    [12] [12] Aydin K, Ferry V E, Briggs R M, et al. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers[J]. Nat Commun, 2011, 2: 517.

    [13] [13] Feng Q, Pu M, Hu C, et al. Engineering the dispersion of metamaterial surface for broadband infrared absorption[J]. Opt Lett, 2012, 37(11): 2133-2135.

    [14] [14] Argyropoulos C, Le K Q, Mattiucci N, et al. Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces [J]. Phys Rev B, 2013, 87(20): 205112.

    [15] [15] Kang M, Liu F, Li T F, et al. Polarization-independent coherent perfect absorption by a dipole-like metasurface [J]. Opt Lett, 2013, 38(16): 3086-3088.

    [16] [16] Yue W, Wang Z, Yang Y, et al. High performance infrared plasmonic metamaterial absorbers and their applications to thin-film sensing[J]. Plasmonics, 2016, 11(6): 1557-1563.

    [17] [17] Hu F, Xu N, Wang W, et al. A dynamically tunable terahertz metamaterial absorber based on an electrostatic MEMS actuator and electrical dipole resonator array[J]. J Micromech Microeng, 2016, 26(2): 025006.

    [18] [18] Zhang S, Genov D A, Wang Y, et al. Plasmon-induced transparency in metamaterials [J]. Phys Rev Lett, 2008, 101(4): 047401.

    [19] [19] Papasimakis N, Fedotov V A, Zheludev N I, et al. Metamaterial analog of electromagnetically induced transparency [J]. Phys Rev Lett, 2008, 101(25): 253903.

    [20] [20] Tassin P, Zhang L, Koschny T, et al. Low-loss metamaterials based on classical electromagnetically induced transparency [J]. Phys Rev Lett, 2009, 102(5): 053901.

    [21] [21] Liu N, Langguth L, Weiss T, et al. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit [J]. Nat Mater, 2009, 8(9): 758-762.

    [22] [22] Yu N, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction [J]. Science, 2011, 334(6054): 333-337.

    [23] [23] Aieta F, Genevet P, Yu N, et al. Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities [J]. Nano Lett, 2012, 12(3): 1702-1706.

    [24] [24] Zhang X, Tian Z, Yue W, et al. Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities [J]. Adv Mater, 2013, 25(33): 4567-4572.

    [25] [25] Liu L, Zhang X, Kenney M, et al. Broadband metasurfaces with simultaneous control of phase and amplitude [J]. Adv Mater, 2014, 26(29): 5031-5036.

    [26] [26] Radko I P, Volkov V S, Beermann J. et al. Plasmonic metasurfaces for waveguiding and field enhancement [J]. Laser & Photon Rev, 2009, 3(6): 575-590.

    [27] [27] Zhao C, Zhang J. Plasmonic demultiplexer and guiding [J]. ACS Nano, 2010, 4(11): 6433-6438.

    [28] [28] Tanemura T, Balram K C, Ly-Gagnon D S, et al. Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler [J]. Nano Lett, 2011, 11(7): 2693-2698.

    [29] [29] Huang L, Chen X, Bai B, et al. Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity [J]. Light: Science & Application, 2013, 2(3): e70.

    [30] [30] Zhao C, Zhang J, Liu Y. Light manipulation with encoded plasmonic nanostructures [J]. EPJ Appl Metamat, 2014, 1: 6-12.

    [31] [31] Wintz D, Genevet P, Ambrosio A, et al. Holographic metalens for switchable focusing of surface plasmons [J]. Nano Lett, 2015, 15(5): 3585-3589.

    [32] [32] Liu J, Gao Y, Ran L, et al. Focusing surface plasmon and constructing central symmetry of focal field with linearly polarized light[J]. Appl Phys Lett, 2015, 106(1): 013116.

    [33] [33] Zou C, Withayachumnankul W, Shadrivov I V, et al. Directional excitation of surface plasmons by dielectric resonators [J]. Phys Rev B, 2015, 91(8): 085433.

    [34] [34] Zhang X, Xu Y, Yue W, et al. Anomalous surface wave launching by handedness phase control[J]. Adv Mater, 2015, 27(44): 7123-7129.

    [35] [35] Xu Q, Zhang X, Xu Y, et al. Plasmonic metalens based on coupled resonators for focusing of surface plasmons[J]. Sci Rep, 2016, 6: 37861.

    [36] [36] Zhou J, Koschny T, Soukoulis C M. Magnetic and electric excitations in split ring resonators [J]. Opt Express, 2007, 15(26): 17881-17890.

    [37] [37] Singh R, Rockstuhl C, Lederer F, et al. The impact of nearest neighbor interaction on the resonances in terahertz metamaterials [J]. Appl Phys Lett, 2009, 94(2): 021116.

    [38] [38] Chiam S Y, Singh R, Zhang W, et al. Controlling metamaterial resonances via dielectric and aspect ratio effects [J]. Appl Phys Lett, 2010, 97(19): 191906.

    [39] [39] Wu P C, Hsu W L, Chen W T, et al. Plasmon coupling in vertical split-ring resonator metamolecules [J]. Sci Rep, 2015, 5: 9726.

    [40] [40] Manjappa M, Srivastava Y K, Singh R. Lattice-induced transparency in planar metamaterials [J]. Phys Rev B, 2016, 94(16): 161103.

    [41] [41] Chen C Y, Un I W, Tai N H, et al. Asymmetric coupling between subradiant and superradiant plasmonic resonances and its enhanced sensing performance [J]. Opt Express, 2009, 17(17): 15372-15380.

    [42] [42] Ma Y, Li Z, Yang Y, et al. Plasmon-induced transparency in twisted Fano terahertz metamaterials [J]. Opt Mater Express, 2011, 1(3): 391-399.

    [43] [43] Taubert R, Hentschel M, Kastel J, et al. Classical analog of electromagnetically induced absorption in plasmonics[J]. Nano Lett, 2012, 12(3): 1367-1371.

    [44] [44] Verslegers L, Yu Z, Ruan Z, et al. From electromagnetically induced transparency to superscattering with a single structure: a coupled-mode theory for doubly resonant structures [J]. Phys Rev Lett, 2012, 108(8): 083902.

    [45] [45] Tassin P, Zhang L, Zhao R, et al. Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation [J]. Phys Rev Lett, 2012, 109(18): 187401.

    [46] [46] Qu K, Agarwal G S. Phonon-mediated electromagnetically induced absorption in hybrid opto-electromechanical systems [J]. Phys Rev A, 2013, 87(3): 031802.

    [47] [47] Liao Z, Pan B C, Shen X, et al. Multiple Fano resonances in spoof localezed surface plasmons [J]. Opt Express, 2014, 22(13): 15710-15717.

    [48] [48] Chen L, Wei Y M, Zang X F, et al. Excitation of dark multipolar plasmonic resonances at terahertz frequencies [J]. Sci Rep, 2016, 6: 22027.

    [49] [49] Zhang X, Xu Q, Li Q, et al. Asymmetric excitation of surface plasmons by dark mode coupling[J]. Sci Adv, 2016, 2(2): e1501142.

    [50] [50] Liu X, Gu J, Singh R, et al. Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode [J]. Appl Phys Lett, 2012, 100(13): 131101.

    [51] [51] Liang D, Zhang H, Gu J, et al. Plasmonic analogue of electromagneticlly induced transparency in stereo metamaterials [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(4): 1-7.

    [52] [52] Zhang X, Xu N, Qu K, et al. Electromagnetically induced absorption in a three-resonator metasurface system [J]. Sci Rep, 2015, 5: 10737.

    [53] [53] Boiler K J, Imamolu A, Harris S E. Observation of electromagnetically induced transparency [J]. Phys Rev Lett, 1991, 66(20): 2593-2596.

    [54] [54] Gu J, Singh R, Liu X, et al. Active control of electromagnetically induced transparency analogue in terahertz metamaterials [J]. Nat Commun, 2012, 3: 1151.

    [55] [55] Wu P C, Chen W T, Yang K Y, et al. Magnetic plasmon induced transparency in three-dimensional metamolecules [J]. Nanophotonics, 2012, 1(2): 131-138.

    [56] [56] Yang Y M, Kravchenko I I, Briggs D, et al. All dielectric metasurface analogue of electromagnetically induced transparency [J]. Nat Commun, 2014, 5: 5753.

    [57] [57] Kaelberer T, Fedotov V A, Papasimakis N, et al. Toroidal dipolar response in a metamaterial [J]. Science, 2010, 330(6010): 1510-1512.

    [58] [58] Gansel J K, Thiel M, Rill M S, et al. Gold helix photonic metamaterial as broadband circular polarizer [J]. Science, 2009, 325(5947): 1513-1515.

    [59] [59] Zhang S, Park Y S, Li J, et al. Negative refractive index in chiral metamaterials[J]. Phys Rev Lett, 2009, 102(2): 023901.

    [60] [60] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics [J]. Nature, 2003, 424(6950): 824-830.

    [61] [61] Ebbesen T W, Genet C, Bozhevolnyi S I. Surface-plasmon circuitry [J]. Phys Today, 2008, 61(5): 44-50.

    [62] [62] Sorger V J, Oulton R F, Ma R M, et al. Toward integrated plasmonic circuits [J]. MRS Bulletin, 2012, 37(8): 728-738.

    [63] [63] Fang Y, Sun M. Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits [J]. Light: Science & Application, 2015, 4(6): e294.

    [64] [64] Xu Y, Zhang X, Tian Z, et al. Mapping the near-field propagation of surface plasmons on terahertz metasurfaces [J]. Appl Phys Lett, 2015, 107(2): 021105.

    CLP Journals

    [1] HU Sen, LIU Dan1, YANG He-lin. Electromagnetic Induced Transparency Based on All-dielectric Metasurface[J]. Acta Photonica Sinica, 2018, 47(11): 1116001

    Tools

    Get Citation

    Copy Citation Text

    Yuan Yuyang, Zhang Huifang, Zhang Xueqian, Gu Jianqiang, Hu Fangrong, Xiong Xianming, Zhang Wentao, Han Jiaguang. Coupling effect of bright and dark modes in THz metamaterials[J]. Infrared and Laser Engineering, 2018, 47(1): 121002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: 先进光学材料

    Received: Jun. 5, 2017

    Accepted: Aug. 3, 2017

    Published Online: Jan. 30, 2018

    The Author Email: Yuyang Yuan (yuangchikane@126.com)

    DOI:10.3788/irla201847.0121002

    Topics