Laser & Optoelectronics Progress, Volume. 55, Issue 9, 90003(2018)

Research and Development Status of Quantum Navigation Technology

Song Peishuai1, Ma Jing1, Ma Zhe1, Zhang Shuyuan11, Si Chaowei1, Han Guowei1, Ning Jin1,2, Yang Fuhua1, and Wang Xiaodong1,3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(87)

    [1] [1] Horodecki R, Horodecki P, Horodecki M, et al. Quantum entanglement[J]. Reviews of Modern Physics, 2009, 81(2): 865-942.

    [2] [2] Terhal B M. Detecting quantum entanglement[J]. Theoretical Computer Science, 2002, 287(1): 313-335.

    [3] [3] Walls D F. Squeezed states of light[J]. Nature, 1983, 306(5939): 141-146.

    [4] [4] Yu Z R. Non-classical states in the quantum optics[J]. Progress in Physics, 1999, 19(1): 72-95.

    [6] [6] Zou H X. The inertial navigation technology of next generation: quantum navigation[J]. National Defense Science & Technology, 2014, 35(6): 19-24.

    [7] [7] Zhang H Y, Zhang G J, Lin X P. The future of GPS-quantum positioning system[J]. Ship Electronic Engineering, 2004, 24(5): 40-43.

    [8] [8] Xu F X. Introduction of the quantum positioning system and its application[J]. Science & Technology Information, 2014, 12(22): 7.

    [9] [9] Li R B, Wang J, Zhan M S. New generation inertial navigation technology: cold atom gyroscope[J]. GNSS World of China, 2010, 35(4): 1-5.

    [10] [10] Wang J H, Shi W P.The application system and policy of foreign satellite navigation and positioning system[J]. China Surveying and Mapping, 2010(1): 40-43.

    [11] [11] Zhou N. How does GPS determine the orientation[J]. Science World, 2012(2): 22-25.

    [12] [12] Wang W G, Tang S H. Conspectus of GPS surveying errors[J]. Geomatics & Spatial Information Technology, 2006, 29(5): 39-42.

    [13] [13] Zhang S X, Sun J. Strapdown inertial navigation system[M]. Beijing: National Defense Industry Press, 1992.

    [14] [14] Zhou X C, Shen J S. Development of inertial navigation technology and its applications[J]. Ordnance Industry Automation, 2006, 25(9): 55-56.

    [15] [15] Dong J W. Analysis on inertial navigation technology[J]. Instrumentation Technology, 2017(1): 41-43.

    [16] [16] Xiong B F. Research on the modeling and correction technology of random drift error of low cost MEMS gyroscope[D]. Chongqing: Southwest University, 2017.

    [17] [17] Wang X L. Inertial navigation foundation[M]. Xi′an: Northwestern Polytechnical University Press, 2013: 67-70.

    [18] [18] Ma J J, Li W Q, Zheng Z Q. Analyzing and modeling for stochastic error of MIMU[J]. Piezoelectrics & Acoustooptics, 2007, 29(4): 483-486.

    [19] [19] Du X J, Zhai J Y. Summary of micro inertial navigation technology based on MEMS[J]. Aerodynamic Missile Journal, 2014(9): 77-81.

    [20] [20] Syed Z F, Aggarwal P, Goodall C, et al. A new multi-position calibration method for MEMS inertial navigation systems[J]. Measurement Science & Technology, 2007, 18(7): 1897-1907.

    [21] [21] Zhang Q, Wang W, Wang L, et al. Research on random errors of fiber optic gyro based on dynamic Allan variance and algorithm improvement[J]. Acta Optica Sinica, 2015, 35(4): 0406003.

    [23] [23] Li X Y, Hu M, Zhang P, et al. Applying overlapping Allan variance theory to better stochastic modeling of microgyro[J]. Journal of Northwestern Polytechnical University, 2007, 25(2): 225-229.

    [24] [24] Giovannetti V, Lloyd S, Maccone L. Quantum-enhanced positioning and clock synchronization[J]. Nature, 2001, 412(6845): 417-419.

    [25] [25] Schrdinger E. The current situation in quantum mechanics (1935)[M]. Wiesbaden: Vieweg+Teubner Verlag, 1984: 98-129.

    [26] [26] Sackett C A, Kielpinski D, King B E, et al. Experimental entanglement of four particles[J]. Nature, 2000, 404(6775): 256-259.

    [27] [27] Hagley E, Matre X, Nogues G, et al. Generation of Einstein-Podolsky-Rosen pairs of atoms[J]. Physical Review Letters, 1997, 79(1): 1-5.

    [28] [28] Shih Y H, Alley C O. New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion[J]. Physical Review Letters, 1988, 61(26): 2921-2924.

    [29] [29] Niu X L. Preparation and application of entangled photons[D]. Hefei: University of Science and Technology of China, 2009.

    [30] [30] Wu H, Wang X B, Pan J W. Quantum communication: status and prospects[J]. Scientia Sinica (Informationis), 2014, 44(3): 296-311.

    [31] [31] Zhao Z, Yang T, Chen Y A, et al. Experimental test of quantum nonlocality in four-photon Greenberger-Horne-Zeilinger entanglement[J]. Physics, 2003, 91(18): 11173-11186.

    [32] [32] Zhao Z, Chen Y A, Zhang A N, et al. Experimental demonstration of five-photon entanglement and open-destination teleportation[J]. Nature, 2004, 430(6995): 54-58.

    [33] [33] Lu C Y, Zhou X Q, Gühne O, et al. Experimental entanglement of six photons in graph states[J]. Nature Physics, 2007, 3(2): 91-95.

    [34] [34] Yao X C, Wang T X, Xu P, et al. Observation of eight-photon entanglement[J]. Nature Photonics,2012, 6(4): 225-228.

    [35] [35] Wang X L, Chen L K, Li W, et al. Experimental ten-photon entanglement[J]. Physical Review Letters, 2016, 117(21): 210502.

    [36] [36] Xu J Q, Lou Q H, Ning D, et al. Second order quantum correlation in stimulated Raman scattering[J]. Acta Optica Sinica, 1997, 17(9) : 70-73.

    [37] [37] The UK developed the quantum navigation positioning system: the QPS accuracy is higher than that of GPS[EB/OL]. (2014-05-19)[2018-01-08]. http://scitech.people.com.cn/n/2014/0519/c1057-25032697.html.

    [38] [38] Giovannetti V, Lloyd S, Maccone L. Advances in quantum metrology[J]. Nature Photonics, 2011, 5(4): 222-229.

    [39] [39] Maccone L, Giovannetti V. Quantum metrology: beauty and the noisy beast[J]. Nature Physics, 2011, 7(5): 376-377.

    [40] [40] Giovannetti V, Lloyd S, Maccone L, et al. Conveyor-belt clock synchronization[J]. Physical Review A, 2004, 70(4): 043808.

    [41] [41] Valencia A, Scarcelli G, Shih Y. Distant clock synchronization using entangled photon pairs[J]. Applied Physics Letters, 2004, 85(13): 2655-2657.

    [42] [42] Bahder T B. Quantum positioning system[C]∥36th Annual Precise Time and Time Interval (PTTI) Meeting, 2005: 423-427.

    [43] [43] Villoresi P, Jennewein T, Tamburini F, et al. Experimental verification of the feasibility of a quantum channel between space and Earth[J]. New Journal of Physics, 2008, 10(3): 033038.

    [44] [44] Ben-Av R, Exman I. Optimized multiparty quantum clock synchronization[J]. Physical Review A, 2011, 84(1): 014301.

    [45] [45] Lopez-Mago D, Novotny L. Coherence measurements with the two-photon Michelson interferometer[J]. Physical Review A, 2012, 86(2): 023820.

    [46] [46] Luo Y, Jiang E C. Positioning and clock synchronization based on second-order quantum coherence[J]. Modern Navigation, 2012, 3(6): 456-461.

    [47] [47] Cong H L, Ren X Z. Exact solutions of energy spectrum and quantum entanglement in Tavis-Cummings model[J]. Laser & Optoelectronics Progress, 2017, 54(9): 092701.

    [48] [48] Xiao J J. Research of measuring technology based on quantum navigation and position[D]. Shanghai: Shanghai Jiao Tong University, 2014: 16-36.

    [50] [50] Yang C Y, Wu D W, Yu Y L, et al. Enhancement of the time of arrival measuring by utilizing multi-structured grouped-entangled quantum pulse[J]. Journal of Beijing University of Posts and Telecommunications, 2011, 34(6): 33-37.

    [51] [51] Wang X, Chen S X, Wu D W, et al. Quantum ranging scheme based on two-mode squeezing light[J]. Acta Optica Sinica, 2016, 36(7): 0727001.

    [52] [52] Yang C Y, Wu D W, Yu Y L, et al. Research on optimal constellation distribution of interferometric quantum positioning system[J]. Bulletin of Surveying and Mapping, 2009(12): 1-6.

    [54] [54] Wang Z G, Yang X, Deng Y F. Research on the near-earth spacecraft quantum positioning determinacy algorithm[J]. Flight Dynamics, 2015, 33(6): 551-554.

    [55] [55] Guo J J, Guo B H, Cheng G M, et al. Research progress on photon orbital angular momentum in quantum communication applications[J]. Laser & Optoelectronics Progress, 2012, 49(8): 080003.

    [57] [57] Cong S, Wang H L, Zou Z S, et al. Techniques of acquisition and coarse tracking in the quantum navigation and positioning system[J]. Aerospace Control and Application, 2017, 43(1): 1-10.

    [58] [58] Jiang H, Wang J Y, Jia J J, et al. The design and research of coarse tracking system for space quantum communication[J]. Optical Communication Technology, 2012, 36(6): 43-46.

    [59] [59] Lin J Y, Wang J N, Zhang L, et al. Research on high-bandwidth technology for quantum communication ATP system[J]. Optical Communication Technology, 2010, 34(7): 57-59.

    [60] [60] Gustavson T L, Bouyer P, Kasevich M A. Dual-atomic-beam matter-wave gyroscope[J]. Proceedings of SPIE, 1998, 3270: 62-69.

    [61] [61] Gustavson T L, Landragin A, Kasevich M A. Rotation sensing with a dual atom-interferometer Sagnac gyroscope[J]. Classical and Quantum Gravity, 2000, 17(12): 2385-2398.

    [62] [62] Durfee D S, Shaham Y K, Kasevich M A. Long-term stability of an area-reversible atom-interferometer Sagnac gyroscope[J]. Physical Review Letters, 2006, 97(24): 240801.

    [63] [63] Stockton J K, Takase K, Kasevich M A. Absolute geodetic rotation measurement using atom interferometry[J]. Physical Review Letters, 2011, 107(13): 133001.

    [64] [64] Gustavson T L, Bouyer P, Kasevich M A. Precision rotation measurements with an atom interferometer gyroscope[J]. Physical Review Letters, 1997, 78(11): 2046-2049.

    [65] [65] Canuel B, Leduc F, Holleville D, et al. Six-axis inertial sensor using cold-atom interferometry[J]. Physical Review Letters, 2006, 97(1): 010402.

    [66] [66] Gauguet A, Canuel B, Lévèque T, et al. Characterization and limits of a cold-atom Sagnac interferometer[J]. Physical Review A, 2009, 80(6): 063604.

    [67] [67] Canuel B, Leduc F, Holleville D, et al. A cold atom interferometer for high precision inertial measurements[C]∥2004 Conference on Precision Electromagnetic Measurements, 2004: 113-114.

    [68] [68] Tackmann G, Berg P, Schubert C, et al. Self-alignment of a compact large-area atomic Sagnac interferometer[J]. New Journal of Physics, 2012, 14(1): 015002.

    [69] [69] Müller T, Gilowski M, Zaiser M, et al. A compact dual atom interferometer gyroscope based on laser-cooled rubidium[J]. The European Physical Journal D, 2009, 53(3): 273-281.

    [70] [70] Larsen M, Bulatowicz M. Nuclear magnetic resonance gyroscope[C]∥2012 IEEE International Frequency Control Symposium, 2012: 1-5.

    [73] [73] Xue H B, Feng Y Y, Chen S, et al. A continuous cold atomic beam interferometer[J]. Journal of Applied Physics, 2015, 117(9): 094901.

    [75] [75] Mandel T. Quantum manipulation of (ultra-)cold atom systems for information processing[D]. Heidelberg: Ruperto-Carola University of Heidelberg, 2014.

    [76] [76] Sun W, Wang B Z, Xu X T, et al. Long-lived 2D spin-orbit coupled topological Bose gas[EB/OL]. (2017-10-02)[2018-01-10]. https:∥arxiv.org/abs/1710.00717.

    [77] [77] Chu Z Y, Sun X G, Wan S A, et al. Nuclear spin magnetic field self-compensation system for atomic spin gyroscope[J]. Chinese Journal of Scientific Instrument, 2013, 34(11): 2579-2584.

    [78] [78] Zhou B Q, Hao J P, Liang X Y, et al. Experimental study on electromagnetic noise suppression of atomic spin gyroscope heating chamber[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(1): 36-42.

    [79] [79] Yang D, Chen L, Jia Y C, et al. Noise suppression for the differential detection in nuclear magnetic resonance gyroscope[C]∥Optoelectronics and Micro/Nano-Optics, 2017: 57.

    [80] [80] http:∥military.china.com/news/568/20160901/23442110.html.

    [81] [81] Wang C E, Qin J. Design method of high uniform magnetic coil for nuclear magnetic resonance gyroscope[J]. Navigation Positioning & Timing, 2017, 4(1): 89-93.

    [82] [82] Yi X, Wang Z G, Xia T, et al. Research on temperature field in the vapor cell of nuclear magnetic resonance gyroscope[J]. Chinese Optics, 2016, 9(6): 671-677.

    [83] [83] Li P, Liu Y Z, Wang J L. Optimization design of multilayer magnetic shield for nuclear magnetic resonance gyroscopes[J]. Journal of Chinese Inertial Technology, 2016, 24(3): 383-389.

    [84] [84] Wang Z Y. Security analysis of quantum cryptography[J]. China Science and Technology Information, 2016(19): 24-25.

    [85] [85] Peng C Z, Yang T, Bao X H, et al. Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication[J]. Physical Review Letters, 2005, 94(15): 150501.

    [86] [86] Liao S K, Cai W Q, Liu W Y, et al. Satellite-to-ground quantum key distribution[J]. Nature, 2017, 549(7670): 43-47.

    [87] [87] Yin J, Cao Y, Li Y H, et al. Satellite-based entanglement distribution over 1200 kilometers[J]. Science, 2017, 356(6343): 1140-1144.

    Tools

    Get Citation

    Copy Citation Text

    Song Peishuai, Ma Jing, Ma Zhe, Zhang Shuyuan1, Si Chaowei, Han Guowei, Ning Jin, Yang Fuhua, Wang Xiaodong. Research and Development Status of Quantum Navigation Technology[J]. Laser & Optoelectronics Progress, 2018, 55(9): 90003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Feb. 17, 2018

    Accepted: --

    Published Online: Sep. 8, 2018

    The Author Email:

    DOI:10.3788/lop55.090003

    Topics