Journal of the Chinese Ceramic Society, Volume. 51, Issue 3, 706(2023)

Reaction Mechanism and High-Temperature Oxidation Behavior of Reactively Sintered ZrB2-SiC-Zr2Al5C5 Composite Ceramics

GUO Qilong1...2,*, HUA Liang1, LIU Ronghao1, YING Hao1, LI Leilei1,2, and WANG Jing12 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(33)

    [1] [1] OPEKA M M, TALMY I G, ZAYKOSKI J A. Oxidation-based materials selection for 2000 ℃+ hypersonic aerosurfaces: theoretical considerations and historical experience[J]. J Mater Sci, 2004, 39: 5887-5904.

    [3] [3] FAHRENHOLTZ W G, HILMAS G E, TALMY I G, et al. Refractory diboride of zirconium and hafnium[J]. J Am Ceram Soc, 2007, 90(5): 1347-1364.

    [5] [5] ZHANG X H, HU P, HAN J C, et al. Ablation behavior of ZrB2-SiC ultra high temperature ceramics under simulated atmospheric re-entry conditions[J]. Compos Sci Technol, 2008, 68(7): 1718-1726.

    [6] [6] WATTS J, HILMAS G E, FAHRENHOLTZ W G. Mechanical characterization of ZrB2-SiC composites with varying SiC particle sizes[J]. J Am Ceram Soc, 2011, 94(12): 4410-4418.

    [7] [7] REZAPOUR A, BALAK Z. Fracture toughness and hardness investigation in ZrB2-SiC-ZrC composite[J]. Mater Chem Phys, 2020, 241: 122284-122288.

    [8] [8] YANG Y, QIAN Y H, XU J J, et al. Effects of TaSi2 addition on room temperature mechanical properties of ZrB2-20SiC composites[J]. Ceram Int, 2018, 44(14): 16150-16156.

    [9] [9] BALAK Z. Shrinkage, hardness and fracture toughness of ternary ZrB2-SiC-HfB2 composite with different amount of HfB2[J]. Mater Chem Phys, 2019, 235: 121706-121712.

    [10] [10] YIN J, ZHANG H, YAN Y J, et al. High toughness in pressureless densified ZrB2-based composites co-doped with boron-titanium carbides[J]. Scr Mater, 2012, 66(8): 523-526.

    [11] [11] WANG Y, LIANG J, HAN W B, et al. Mechanical properties and thermal shock behavior of hot-pressed ZrB2-SiC-AlN composites[J]. J Alloy Compd, 2009, 475(1): 762-765.

    [12] [12] GUO S. Effects of VC additives on densification and elastic and mechanical properties of hot-pressed ZrB2-SiC composites[J]. J Mater Sci, 2018, 53: 4010-4021.

    [13] [13] VAFA N P, NAYRBI B, ASL M S, et al. Reactive hot pressing of ZrB2-based composites with changes in ZrO2/SiC ratio and sintering conditions. Part II: mechanical behavior[J]. Ceram Int, 2016, 42(2): 2724-2733.

    [14] [14] NAYEBI B, AHMADI Z, ASL M S, et al. Influence of vanadium content on the characteristics of spark plasma sintered ZrB2-SiC-V composites[J]. J Alloy Compd, 2019, 805: 725-732.

    [15] [15] YAN X J, JIN X C, Li P, et al. Microstructures and mechanical properties of ZrB2-SiC-Ni ceramic composites prepared by spark plasma sintering[J]. Ceram Int, 2019, 45(13): 16707-16712.

    [16] [16] GUICCIARDI S, SILVESTRONI L, NYGREN M, et al. Microstructure and toughening mechanisms in spark plasma-singtered ZrB2 ceramics reinforced by SiC whiskers or SiC-chopped fibers[J]. J Am Ceram Soc, 2010, 93(8): 2384-2391.

    [17] [17] ASL M S, ZAMHARIR M J, AHMADI Z, et al. Effects of nano-graphite content on the characteristics of spark plasma sintered ZrB2-SiC composites[J]. Mater Sci Eng A, 2018, 716(14): 99-106.

    [18] [18] ZHANG X H, AN Y M, HAN J C, et al. Graphene nanosheet reinforced ZrB2-SiC ceramic composite by thermal reduction of graphene oxide[J]. Rsc Adv, 2015, 5(58): 47060-47065.

    [19] [19] YUE C G, LIU W W, ZHANG L, et al. Fracture toughness and toughening mechanisms in a (ZrB2-SiC) composite reinforced with boron nitride nanotubes and boron nitride nanoplatelets[J]. Scr Mater, 2013, 68: 579-582.

    [20] [20] ASL M S, FARAHBAKHSH I, NAYEBI B. Characteristics of multi-walled carbon nanotube toughened ZrB2-SiC ceramic composite prepared by hot pressing[J]. Ceram Int, 2016, 42(1): 1950-1958.

    [21] [21] LIN J, ZHANG X H, WANG Z, et al. Microstructure and mechanical properties of ZrB2-SiC-ZrO2f ceramic[J]. Scr Mater, 2011, 64: 872-875.

    [22] [22] SHA J J, LI J, LV Z Z, et al. ZrB2-based composites toughened by as-received and heat-treated short carbon fibers[J]. J Eur Ceram Soc, 2017, 37(2): 549-558.

    [25] [25] GUO Q L, LI J G, SHEN Q, et al. Toughening of ZrB2-SiC ceramics with the microstructure ZrB2/Zr-Al-C fibrous monolith[J]. Scr Mater, 2012, 66: 296-299.

    [26] [26] GUO Q L, LI J G, SHEN Q, et al. Preparation and characterization of ZrB2-SiC-Zr2Al4C5 composites by spark plasma sintering-reactive synthesis (SPS-RS) method[J]. Mater Sci Eng A, 2012, 558:186-192.

    [27] [27] WU W W, XIAO W L, ESTILI M. Microstructure and mechanical properties of ZrB2-SiC-BN composites fabricated by reactive hot pressing and reactive spark plasma sintering[J]. Scr Mater, 2013, 68(11): 889-892.

    [28] [28] FAHRENHOLTZ W G. Thermodynamic analysis of ZrB2-SiC oxidation: Formation of a SiC-depleted region [J]. J Am Ceram. Soc, 2007, 90(1): 143-148.

    [29] [29] HU P, GUI K, YANG Y, et al. Effect of SiC content on the ablation and oxidation behavior of ZrB2-based ultra high temperature ceramic composites[J]. Materials, 2013, 6: 1730-1744.

    [30] [30] TALMY I G, ZAYKOSKI J A, OPEKA M M. High-temperature chemistry and oxidation of ZrB2 ceramics containing SiC, Si3N4, Ta5Si3, and TaSi2[J]. J Am Ceram Soc, 2008, 91(7): 2250-2257.

    [31] [31] OPILA E, LEVINE S, LORINCZ J. Oxidation of ZrB2- and HfB2-based ultra-high temperature ceramics: Effect of Ta additions[J]. J Mater Sci, 2004, 39: 5969-5977.

    [32] [32] PENG F, SPEYER R F. Oxidation resistance of fully dense ZrB2 with SiC, TaB2, and TaSi2 additives[J]. J Am Ceram Soc, 2008, 91(5): 1489-1494.

    [33] [33] SILVESTRONI L, MERIGGI G, SCITI D. Oxidation behavior of ZrB2 composites doped with various transition metal silicides[J]. Corros Sci, 2014, 83(6): 281-291.

    [34] [34] OUYANG G Y, RAY P K, KRAMER M J, et al. Effect of AlN substitutions on the oxidation behavior of ZrB2-SiC composites at 1 600 ℃[J]. J Am Ceram Soc, 2016, 99(10): 3389-3397.

    [35] [35] GUO Q L, SILVA C V J, BOURGEOIS B B, et al. Influence of in-situ synthesized Zr-Al-C on microstructure and toughening of ZrB2-SiC composite ceramics fabricated by spark plasma sintering. Ceram Int, 2017, 43(16): 13047-13054.

    [36] [36] YU L, PAN L M, YANG J, et al. In situ synthesis, mechanical properties, and oxidation resistance of (SiC+ZrB2)/Zr3[Al(Si)]4C6 composites. Corros Sci, 2016, 110(9): 182-191.

    [37] [37] GUO Q L, LIN M, LUO S J, et al. Influence of composition on microstructure, mechanical properties and oxidation behavior of ZrB2/ZrAlC composite ceramics[J]. J Ceram Soc Jap, 2019(12), 127: 878-886.

    Tools

    Get Citation

    Copy Citation Text

    GUO Qilong, HUA Liang, LIU Ronghao, YING Hao, LI Leilei, WANG Jing. Reaction Mechanism and High-Temperature Oxidation Behavior of Reactively Sintered ZrB2-SiC-Zr2Al5C5 Composite Ceramics[J]. Journal of the Chinese Ceramic Society, 2023, 51(3): 706

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 5, 2022

    Accepted: --

    Published Online: Apr. 10, 2023

    The Author Email: Qilong GUO (guoqilong8@126.com)

    DOI:

    CSTR:32186.14.

    Topics