Laser & Optoelectronics Progress, Volume. 49, Issue 9, 90002(2012)

High Spatial Resolution Confocal Microscopy Using Adaptive Optics

Tan Zuojun*, Xie Jing, Lu Jun, Wang Xianfeng, and Chen Jianjun
Author Affiliations
  • [in Chinese]
  • show less
    References(40)

    [1] [1] Lu Zhijian, Lu Jingze, Wu Yaqiong et al.. Introduction to theories of several super-resolution fluorescence microscopy methods and recent advance in the field [J]. Prog. Biochem. Biophys., 2009, 36(12): 1626~1634

    [2] [2] Luo Qingming, Zhang Zhihong. Progress in immunophotonics[J]. Acta Optica Sinica, 2011, 31(9): 0900114

    [3] [3] M. J. Booth. Adaptive optics in microscopy[J]. Phil. Trans. R. Soc. A, 2007, 365(1861): 2829~2843

    [4] [4] Jiang Wenhan. Adaptive optical technology [J]. Chinese J. Nature, 2006, 28(1): 7~13

    [6] [6] C. J. R. Sheppard, C. J. Cogswell. Effects of aberrating layers and tube length on confocal imaging properties[J]. Optik, 1991, 87(1): 34~385

    [7] [7] C. J. R. Sheppard, M. Gu. Aberration compensation in confocal microscopy[J]. Appl. Opt., 1991, 30(25): 3563~3568

    [8] [8] A. Egner, S. W. Hell. Equivalence of the Huygens-Fresnel and Debye approach for the calculation of high aperture point-spread functions in the presence of refractive index mismatch[J]. J. Microsc., 1998, 193(3): 244~249

    [9] [9] M. Schwertner, M. J. Booth, T. Wilson. Characterizing specimen induced aberrations for high NA adaptive optical microscopy[J]. Opt. Express, 2004, 12(26): 6540~6552

    [11] [11] J. Liang, D. R. Williams. Supernormal vision and high-resolution retinal imaging through adaptive optics[J]. J. Opt. Soc. Am. A, 1997, 14(11): 2884~2892

    [12] [12] Jiang Wenhan, Zhang Yudong, Rao Changhui et al.. Progress on adaptive optics of Institute of Optics and Electronics, Chinese Academy of Sciences[J]. Acta Optica Sinica, 2011, 31(9): 0900106

    [13] [13] J. W. O′Byrne, W. Fekete, M. R. Arnison et al.. Adaptive optics in confocal microscopy[C]. Proc. 2nd Int. Workshop on Adaptive Optics for Industry and Medicine, 1999, 85~90

    [14] [14] M. J. Booth, M. A. A. Neil, R. Jukaitis et al.. Adaptive aberration correction in a confocal microscope[J]. PNAS, 2002, 99(9): 5788~5792

    [15] [15] M. A. Neil, R. Jukaitis, M. J. Booth et al.. Adaptive aberration correction in a two-photon microscope[J]. J. Microsc, 2002, 200(2): 105~108

    [16] [16] A. J. Wright, D. Burns, B. A. Patterson et al.. Exploration of the optimization algorithms used in the implementation of adaptive optics in confocal and multiphoton microscopy[J]. Microsc. Res. Technol., 2005, 67(1): 36~44

    [17] [17] L. Sherman, J. Y. Ye, O. Albert et al.. Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror[J]. J. Microsc., 2002, 206(1): 65~71

    [18] [18] P. N. Marsh, D. Burns, J. M. Girkin. Practical implementation of adaptive optics in multiphoton microscopy[J]. Opt. Express, 2003, 11(10): 1123~1130

    [19] [19] M. Rueckel, J. A. Mack-Bucher, W. Denk. Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing[J]. PNAS, 2006, 103(46): 17137~17142

    [20] [20] B. Potsaid, Y. Bellouard, J. T. Wen. Adaptive scanning optical microscope (ASOM): a multidisciplinary optical microscope design for large field of view and high resolution imaging[J]. Opt. Express, 2005, 13(17): 6504~6518

    [21] [21] Yaopeng Zhou. Adaptive Optics Two-Photon Scanning Laser Fluorescence Microscopy [D]. New York: Boston University, 2009

    [22] [22] Na Ji, Daniel E. Milkie, Eric Betzig. Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues[J]. Nature Methods, 2010, 7(2): 141~147

    [23] [23] Emmanuelle Chaigneau, Amanda J. Wright, Simon P. Poland et al.. Impact of wavefront distortion and scattering on 2-photon microscopy in mammalian brain tissue[J]. Opt. Express, 2011, 19(23): 22755~22774

    [24] [24] Xiaodong Tao, Oscar Azucena, Min Fu et al.. Adaptive optics microscopy with direct wavefront sensing using fluorescent protein guide stars [J]. Opt. Lett., 2011, 36(17): 3389~3391

    [25] [25] Zhou Renzhong, Yan Jixiang. Adaptive Optics Theory [M]. Beijing: Beijing Institute of Technology Press, 1996. 1~45

    [26] [26] P. Artal, S. Marcos, R. Navarro et al.. Odd aberrations and double-pass measurements of retinal image quality[J]. J. Opt. Soc. Am. A, 1995, 12(2): 195~201

    [28] [28] M. J. Booth, M. A. Neil, T. Wilson. New modal wave-front sensor: application to adaptive confocal fluorescence microscopy and two-photon excitation fluorescence microscopy[J]. J. Opt. Soc. Am. A, 2002, 19(10): 2112~2120

    [29] [29] M. Feierabend, M. Ruckel, W. Denk. Coherence-gated wave-front sensing in strongly scattering samples[J]. Opt. Lett., 2004, 29(19): 2255~2257

    [30] [30] B. M. Hanser, M. G. L. Gustafsson, D. A. Agard et al.. Phase-retrieved pupil functions in wide-field fluorescence microscopy[J]. J. Microsc., 2004, 216(1): 36~48

    [31] [31] E. J. Fernandez, P. Artal. Membrane deformable mirror for adaptive optics: performance limits in visual optics[J]. Opt. Express, 2003, 11(9): 1056~1069

    [32] [32] L. J. Zhu, P. C. Sun, D. U. Bartsch et al.. Wave-front generation of Zernike polynomial modes with a micromachined membrane deformable mirror[J]. Appl. Opt., 1999, 38(287): 6019~6026

    [33] [33] M. J. Booth, T. Wilson, H. B. Sun et al.. Methods for the characterization of deformable membrane mirrors[J]. Appl. Opt., 2005, 44(24): 5131~5139

    [34] [34] C. M. Louis, H. John. Historical review of adaptive optics technology[C]. SPIE, 1993, 2141: 122~135

    [35] [35] Hongbin Yu, Haiqing Chen, Sai Fu. A versatile micromirror with multi-movem ent mode[J]. Appl. Opt., 2005, 44(7): 1178~1181

    [36] [36] D. J. Dagel. Large-stroke MEMS deformable mirrors for adaptive optics[J]. J. Microelectromech. Syst., 2006, 15(3): 572~583

    [37] [37] Z. Kam, P. Kner, D. Agard et al.. Modeling the application of adaptive optics to wide-field microscope live imaging[J]. J. Microsc., 2007, 226(1): 33~42

    [38] [38] B. E. Cohen. Biological imaging: beyond fluorescence[J]. Nature, 2010, 467(7314): 407~408

    [39] [39] John Paul Pezacki, Jessie A Blake, Dana C Danielson et al.. Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy[J]. Nature Chemical Biology, 2011, 7(3): 137~145

    [40] [40] S. W. Hell. Far-field optical nanoscopy[J]. Science, 2007, 316(5828): 1153~1158

    CLP Journals

    [1] Zheng Xianliang, Liu Ruixue, Xia Mingliang, Li Dayu, Xuan Li. Temporal Properties Study of Ocular Wave Aberrations with High Frequency Sampling[J]. Acta Optica Sinica, 2014, 34(7): 733001

    [2] Xie Hongsheng, Yang Lebao, Xia Mingliang, Li Dayu, Xuan Li. Inhibiting Intraocular Stray Light Method to Improve Quality of Retinal Image[J]. Acta Optica Sinica, 2014, 34(10): 1011004

    [3] Xu Yang, Man Tianlong, Wan Yuhong. Research Progress on Adaptive Wide-Field Microscopic Imaging Technology with High Resolution[J]. Laser & Optoelectronics Progress, 2017, 54(9): 90003

    Tools

    Get Citation

    Copy Citation Text

    Tan Zuojun, Xie Jing, Lu Jun, Wang Xianfeng, Chen Jianjun. High Spatial Resolution Confocal Microscopy Using Adaptive Optics[J]. Laser & Optoelectronics Progress, 2012, 49(9): 90002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Mar. 27, 2012

    Accepted: --

    Published Online: May. 22, 2012

    The Author Email: Zuojun Tan (tzj@mail.hzau.edu.cn)

    DOI:10.3788/lop49.090002

    Topics