Chinese Journal of Quantum Electronics, Volume. 39, Issue 4, 477(2022)
Computational and spectroscopic investigation of two lowest electronic states of I+2
[1] [1] Frost D C, McDowell C A, Vroom D A. Photoelectron spectra of the halogens and the hydrogen halides [J]. The Journal of Chemical Physics, 1967, 46(11): 4255-4259.
[2] [2] Cornford A B, Frost D C, McDowell C A, et al. Photoelectron spectra of the halogens [J]. The Journal of Chemical Physics, 1971, 54(6): 2651-2657.
[3] [3] Evans S, Orchard A F. The helium-(I) photoelectron spectra of some halogens and diatomic interhalogens [J]. Inorganica Chimica Acta, 1971, 5: 81-85.
[4] [4] Potts A W, Price W C. Photoelectron spectra of the halogens and mixed halides ICl and IBr [J]. Transactions of the Faraday Society, 1971, 67: 1242.
[5] [5] Higginson B R, Lloyd D R, Roberts P J. Variable temperature photoelectron spectroscopy. The adiabatic ionization potential of the iodine molecule [J]. Chemical Physics Letters, 1973, 19(4): 480-482.
[6] [6] Lonkhuyzen H V, De Lange C A. High-resolution UV photoelectron spectroscopy of diatomic halogens [J]. Chemical Physics, 1984, 89(2): 313-322.
[7] [7] Tuckett R P, Castellucci E, Bonneau M, et al. Coincidence studies of fluorescence and dissociation processes in electronic excited states of I+2, Br+2, IBr+ and ICl+ [J]. Chemical Physics, 1985, 92(1): 43-57.
[8] [8] Horner J P, Eland J H D. The A2Πu-X2Πg emission of I+2 [J]. Chemical Physics Letters, 1984, 110(1): 29-31.
[9] [9] Mason S M, Tuckett R P. The A2Πu-X2Πg emission spectrum of I+2 [J]. Chemical Physics Letters, 1989, 160(5-6): 575-580.
[10] [10] Yencha A J, Cockett M C R, Goode J G, et al. Threshold photoelectron spectroscopy of I2 [J]. Chemical Physics Letters, 1994, 229(4-5): 347-352.
[11] [11] Cockett M C R, Goode J G, Lawley K P, et al. Zero kinetic energy photoelectron spectroscopy of Rydberg excited molecular iodine [J]. The Journal of Chemical Physics, 1995, 102(13): 5226-5234.
[12] [12] Cockett M C. Evidence for spin-orbit autoionization in the zero kinetic energy photoelectron spectrum of molecular iodine ionized via the valence B3Π+0u state [J]. The Journal of Physical Chemistry, 1995, 99(44): 16228-16233.
[13] [13] Cockett M C R, Donovan R J, Lawley K P. Zero kinetic energy pulsed field ionization (ZEKE-PFI) spectroscopy of electronically and vibrationally excited states of I+2: The A2Π3/2,u state and a new electronic state, the a 4Σ-u state [J]. The Journal of Chemical Physics, 1996, 105(9): 3347-3360.
[14] [14] Deng L H, Zhu Y Y, Li C L, et al. High-resolution observation and analysis of the I+2 A2Π3/2,u-X2Π3/2,?g system [J]. The Journal of Chemical Physics, 2012, 137(5): 054308.
[15] [15] Mu X L, Li C L, Deng L H, et al. Spectra of I+2 for possible measurement of α and μ constant [J]. Acta Physica Sinica, 2017, 66(23): 233301.
[16] [16] Li J Q, Balasubramanian K. Spectroscopic properties and potential energy curves of I2 and I+2 [J]. Journal of Molecular Spectroscopy, 1989, 138(1): 162-180.
[17] [17] de Jong W A, Visscher L, Nieuwpoort W C. Relativistic and correlated calculations on the ground, excited, and ionized states of iodine [J]. The Journal of Chemical Physics, 1997, 107(21): 9046-9058.
[18] [18] Werner H J, Knowles P J, Knizia G, et al. Molpro: A general-purpose quantum chemistry program package [J]. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2012, 2(2): 242-253.
[19] [19] Peterson K A, Yousaf K E. Molecular core-valence correlation effects involving the post-d elements Ga-Rn: Benchmarks and new pseudopotential-based correlation consistent basis sets [J]. The Journal of Chemical Physics, 2010, 133(17): 174116.
[20] [20] Le Roy R J. LEVEL: A computer program for solving the radial Schrodinger equation for bound and quasibound levels [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 186: 167-178.
[21] [21] Bernath P F. Spectra of Atoms and Molecules [M]. Oxford: Oxford University Press, 2005: 210-212.
[22] [22] Li C L, Li Y C, Ji Z H, et al. Candidates for direct laser cooling of diatomic molecules with the simplest 1Σ-1Σ electronic system [J]. Physical Review A, 2018, 97(6): 062501.
[23] [23] Le Roy R J. RKR1: A computer program implementing the first-order RKR method for determining diatomic molecule potential energy functions [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 186: 158-166.
[24] [24] Western C M. PGOPHER: A program for simulating rotational, vibrational and electronic spectra [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 186: 221-242.
[25] [25] Rice O K. Perturbations in molecules and the theory of predissociation and diffuse spectra. II [J]. Physical Review, 1930, 35(12): 1551-1558.
[26] [26] Zhou R, Li C L, He X H, et al. Spectroscopic properties of low-lying excited electronic states for CF- anion based on ab?initio calculation [J]. Acta Physica Sinica, 2017, 66(2): 023101.
[27] [27] Herzberg G. Molecular Spectra and Molecular Structure. Vol.1: Spectra of Diatomic Molecules [M]. 2nd ed., New York: Van Nostrand Reinhold, 1950: 405-408.
Get Citation
Copy Citation Text
WANG Zeyu, CUI Qi, HE Xiaohu, LU Danhua, QIU Xuanbing, HE Qiusheng, LAI Yunzhong, LI Chuanliang. Computational and spectroscopic investigation of two lowest electronic states of I+2[J]. Chinese Journal of Quantum Electronics, 2022, 39(4): 477
Category:
Received: Dec. 18, 2020
Accepted: --
Published Online: Aug. 24, 2022
The Author Email: Zeyu WANG (wxfx1211@163.com)