Bulletin of the Chinese Ceramic Society, Volume. 41, Issue 11, 4021(2022)

Research and Development Progress of Electromagnetic Shielding Glass

GUO Chen1...2, YANG Liqing1, WAN Rui1,2, GUAN Yongmao1,2, CHEN Chao1, and WANG Pengfei12 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(47)

    [5] [5] TAN D C, JIANG C M, LI Q K, et al. Development and current situation of flexible and transparent EM shielding materials[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(21): 2560325630.

    [6] [6] OSIPKOV A, MAKEEV M, GARSIYA E, et al. Radioshielding metamaterials transparent in the visible spectrum: approaches to creation[J]. IOP Conference Series: Materials Science and Engineering, 2021, 1060(1): 012007.

    [9] [9] ZHANG C, JI C G, PARK Y B, et al. Thinmetalfilmbased transparent conductors: material preparation, optical design, and device applications[J]. Advanced Optical Materials, 2021, 9(3): 2001298.

    [10] [10] HAN Y, LIU Y X, HAN L, et al. Highperformance hierarchical graphene/metalmesh film for optically transparent electromagnetic interference shielding[J]. Carbon, 2017, 115: 3442.

    [11] [11] RAY B, PARMAR S, DATE K, et al. Optically transparent polymer composites: a study on the influence of filler/dopant on electromagnetic interference shielding mechanism[J]. Journal of Applied Polymer Science, 2021, 138(16): 50255.

    [12] [12] WANG H Y, JI C G, ZHANG C, et al. Highly transparent and broadband electromagnetic interference shielding based on ultrathin doped Ag and conducting oxides hybrid film structures[J]. ACS Applied Materials & Interfaces, 2019, 11(12): 1178211791.

    [13] [13] ERDOGAN N, ERDEN F, ASTARLIOGLU A T, et al. ITO/Au/ITO multilayer thin films on transparent polycarbonate with enhanced EMI shielding properties[J]. Current Applied Physics, 2020, 20(4): 489497.

    [14] [14] PARK J S, LEE S S, PARK I K. Visible and IR transparent Codoped SnO2 thin films with efficient electromagnetic shielding performance[J]. Journal of Alloys and Compounds, 2020, 815: 152480.

    [15] [15] FERNANDES G E, LEE D J, KIM J H, et al. Infrared and microwave shielding of transparent Aldoped ZnO superlattice grown via atomic layer deposition[J]. Journal of Materials Science, 2013, 48(6): 25362542.

    [16] [16] YUAN C W, HUANG J H, DONG Y X, et al. Recordhigh transparent electromagnetic interference shielding achieved by simultaneous microwave FabryPérot interference and optical antireflection[J]. ACS Applied Materials & Interfaces, 2020, 12(23): 2665926669.

    [17] [17] WANG H Y, ZHANG Y L, JI C G, et al. Transparent perfect microwave absorber employing asymmetric resonance cavity[J]. Advanced Science, 2019, 6(19): 1901320.

    [18] [18] LIANG Z C, ZHAO Z Y, PU M B, et al. Metallic nanomesh for highperformance transparent electromagnetic shielding[J]. Optical Materials Express, 2020, 10(3): 796806.

    [19] [19] LU Z G, WANG H Y, TAN J B, et al. Microwave shielding enhancement of hightransparency, doublelayer, submillimeterperiod metallic mesh[J]. Applied Physics Letters, 2014, 105(24): 241904.

    [20] [20] LU Z G, TAN J B. Analysis of transmitting characteristics of hightransparency doublelayer metallic meshes with submillimeter period using an analytical model[J]. Applied Optics, 2008, 47(29): 55195526.

    [21] [21] ZHANG Y Q, DONG H X, LI Q S, et al. Doublelayer metal mesh etched by femtosecond laser for highperformance electromagnetic interference shielding window[J]. RSC Advances, 2019, 9(39): 2228222287.

    [22] [22] HAN Y, ZHONG H, LIU N, et al. In situ surface oxidized copper mesh electrodes for highperformance transparent electrical heating and electromagnetic interference shielding[J]. Advanced Electronic Materials, 2018, 4(11): 1800156.

    [23] [23] SHI K, SU J H, HU K, et al. Highperformance copper mesh for optically transparent electromagnetic interference shielding[J]. Journal of Materials Science: Materials in Electronics, 2020, 31(14): 1164611653.

    [25] [25] TAN J B, LU Z G. Contiguous metallic rings: an inductive mesh with high transmissivity, strong electromagnetic shielding, and uniformly distributed stray light[J]. Optics Express, 2007, 15(3): 790796.

    [26] [26] LU Z G, WANG H Y, TAN J B, et al. Achieving an ultrauniform diffraction pattern of stray light with metallic meshes by using ring and subring arrays[J]. Optics Letters, 2016, 41(9): 19411944.

    [27] [27] WANG H, LU Z, TAN J. Generation of uniform diffraction pattern and high EMI shielding performance by metallic mesh composed of ring and rotated subring arrays[J]. Optics Express, 2016, 24(20): 2298923000.

    [28] [28] LU Z G, LIU Y S, WANG H Y, et al. Optically transparent frequency selective surface based on nested ring metallic mesh[J]. Optics Express, 2016, 24(23): 2610926118.

    [29] [29] WANG H Y, LU Z G, LIU Y S, et al. Doublelayer interlaced nested multiring array metallic mesh for highperformance transparent electromagnetic interference shielding[J]. Optics Letters, 2017, 42(8): 16201623.

    [30] [30] WANG H Y, LU Z G, TAN J B, et al. Transparent conductor based on metal ring clusters interface with uniform light transmission for excellent microwave shielding[J]. Thin Solid Films, 2018, 662: 7682.

    [31] [31] WANG W Q, BAI B F, ZHOU Q, et al. Petalshaped metallic mesh with high electromagnetic shielding efficiency and smoothed uniform diffraction[J]. Optical Materials Express, 2018, 8(11): 3485.

    [32] [32] XU X M, LIN Z X, WANG S H, et al. Analysis of the effect on shielding effectiveness of the rotation angle in multiring metallic meshes[J]. IEEE Microwave and Wireless Components Letters, 2020, 99: 14.

    [33] [33] HAN Y, LIN J, LIU Y X, et al. Crackle template based metallic mesh with highly homogeneous light transmission for highperformance transparent EMI shielding[J]. Scientific Reports, 2016, 6: 25601.

    [34] [34] WALIA S, SINGH A K, RAO V S G, et al. Metal meshbased transparent electrodes as highperformance EMI shields[J]. Bulletin of Materials Science, 2020, 43(1): 18.

    [35] [35] VORONIN A S, FADEEV Y V, GOVORUN I V, et al. CuAg and NiAg meshes based on cracked template as efficient transparent electromagnetic shielding coating with excellent mechanical performance[J]. Journal of Materials Science, 2021, 56(26): 1474114762.

    [36] [36] JIANG Z Y, ZHAO S Q, HUANG W B, et al. Embedded flexible and transparent doublelayer nickelmesh for high shielding efficiency[J]. Optics Express, 2020, 28(18): 2653126542.

    [37] [37] JIANG Z Y, HUANG W B, CHEN L S, et al. Ultrathin, lightweight, and freestanding metallic mesh for transparent electromagnetic interference shielding[J]. Optics Express, 2019, 27(17): 2419424206.

    [38] [38] KIM M H, JOH H, HONG S H, et al. Coupled Ag nanocrystalbased transparent mesh electrodes for transparent and flexible electromagnetic interference shielding films[J]. Current Applied Physics, 2019, 19(1): 813.

    [39] [39] TRAN V V, NGUYEN D D, NGUYEN A T, et al. Electromagnetic interference shielding by transparent graphene/nickel mesh films[J]. ACS Applied Nano Materials, 2020, 3(8): 74747481.

    [40] [40] MA L M, LU Z G, TAN J B, et al. Transparent conducting graphene hybrid films to improve electromagnetic interference (EMI) shielding performance of graphene[J]. ACS Applied Materials & Interfaces, 2017, 9(39): 3422134229.

    [41] [41] LU Z G, MA L M, TAN J B, et al. Graphene, microscale metallic mesh, and transparent dielectric hybrid structure for excellent transparent electromagnetic interference shielding and absorbing[J]. 2D Materials, 2017, 4(2): 025021.

    [42] [42] PHAN D T, JUNG C W. Multilayered salt water with high optical transparency for EMI shielding applications[J]. Scientific Reports, 2020, 10: 21549.

    [43] [43] PHAN D T, JUNG C W. Optically transparent and very thin structure against electromagnetic pulse (EMP) using metal mesh and saltwater for shielding windows[J]. Scientific Reports, 2021, 11: 2603.

    [44] [44] ZHANG Y Q, DONG H X, MOU N L, et al. Highperformance broadband electromagnetic interference shielding optical window based on a metamaterial absorber[J]. Optics Express, 2020, 28(18): 2683626849.

    [45] [45] ZHOU Q, YIN X W, YE F, et al. Optically transparent and flexible broadband microwave metamaterial absorber with sandwich structure[J]. Applied Physics A, 2019, 125(2): 18.

    [46] [46] WANG Z X, JIAO B, QING Y C, et al. Flexible and transparent ferroferric oxidemodified silver nanowire film for efficient electromagnetic interference shielding[J]. ACS Applied Materials & Interfaces, 2020, 12(2): 28262834.

    [47] [47] ZHANG N, WANG Z, SONG R G, et al. Flexible and transparent graphene/silvernanowires composite film for high electromagnetic interference shielding effectiveness[J]. Science Bulletin, 2019, 64(8): 540546.

    [48] [48] ZHOU B, SU M J, YANG D Z, et al. Flexible MXene/silver nanowirebased transparent conductive film with electromagnetic interference shielding and electrophotothermal performance[J]. ACS Applied Materials & Interfaces, 2020, 12(36): 4085940869.

    [49] [49] CHEN W, LIU L X, ZHANG H B, et al. Flexible, transparent, and conductive Ti3C2Tx MXenesilver nanowire films with smart acoustic sensitivity for highperformance electromagnetic interference shielding[J]. ACS Nano, 2020: 2020 Jun 1.

    [50] [50] ZHU X Z, XU J, QIN F, et al. Highly efficient and stable transparent electromagnetic interference shielding films based on silver nanowires[J]. Nanoscale, 2020, 12(27): 1458914597.

    [51] [51] GU J H, HU S W, JI H J, et al. Multilayer silver nanowire/polyethylene terephthalate mesh structure for highly efficient transparent electromagnetic interference shielding[J]. Nanotechnology, 2020, 31(18): 185303.

    [52] [52] YANG Y, CHEN S, LI W L, et al. Reduced graphene oxide conformally wrapped silver nanowire networks for flexible transparent heating and electromagnetic interference shielding[J]. ACS Nano, 2020, 14(7): 87548765.

    [53] [53] LIANG X W, ZHOU J W, LI G, et al. Insitu redox nanowelding of copper nanowires with surficial oxide layer as solder for flexible transparent electromagnetic interference shielding[C]//2019 IEEE 69th Electronic Components and Technology Conference. Las Vegas, NV, USA. IEEE, 2019: 746752.

    [54] [54] HOSSEINI E, ARJMAND M, SUNDARARAJ U, et al. Fillerfree conducting polymers as a new class of transparent electromagnetic interference shields[J]. ACS Applied Materials & Interfaces, 2020, 12(25): 2859628606.

    Tools

    Get Citation

    Copy Citation Text

    GUO Chen, YANG Liqing, WAN Rui, GUAN Yongmao, CHEN Chao, WANG Pengfei. Research and Development Progress of Electromagnetic Shielding Glass[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(11): 4021

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Apr. 26, 2022

    Accepted: --

    Published Online: Dec. 26, 2022

    The Author Email:

    DOI:

    CSTR:32186.14.

    Topics