Optics and Precision Engineering, Volume. 21, Issue 2, 356(2013)

Research and development statue of physical human-robot interaction

XIONG Gen-liang*... CHEN Hai-chu, LIANG Fa-yun and DONG Zeng-wen |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(60)

    [1] [1] GOODRICH M A, SCHULTZ A C. Human-robot interaction: A survey [J]. Foundations and Trends in Human-Computer Interaction, 2007, 1(3):203-275.

    [2] [2] SANTIS A D. Modelling and Control for Human-Robot Interaction [D]. Napoli: Doctor Thesis of Universit`a Degli Studi di Napoli Federico II, 2007.

    [3] [3] HADDADIN S, SCHAFFER A A, HIRZINGER G. Requirements for safe robots: Measurements, analysis and new insights [J]. The International Journal of Robotics Research, 2009, 28(11-12):1507-1527.

    [4] [4] HADDADIN S, SCHAFFER A A, HIRZINGER G. The role of the robot mass and velocity in physical human-robot interaction- part I: Non-constrained blunt impacts [C]. International Conference on Robotics and Automation, Pasadena, CA, USA:2008:1331-1338.

    [5] [5] LUCA A D, SCHAFFER A A, HADDADIN S, et al.. Collision detection and safe reaction with DLR-III lightweight manipulator arm [C]. International Conference on Intelligent Robots and Systems, Beijing, China:2006:1623-1630.

    [6] [6] GAO D, WAMPLER C W. Head injury criterion [J]. Robotics & Automation Magazine, IEEE, 2009, 16(4):71-74.

    [7] [7] BICCHI A, TONIETTI G. Fast and“soft-arm”tactics [J]. IEEE Robotics & Automation Magazine, 2004, 11(2):22-33.

    [8] [8] HADDADIN S, SCHAFFER A A, HIRZINGER G. The role of the robot mass and velocity in physical human-robot interaction- part II: constrained blunt impacts [C]. International Conference on Robotics and Automation, Pasadena, CA, USA:2008:1339-134.

    [9] [9] HADDADIN S. Evaluation Criteria and Control Structure for Safe Human-robot Interaction [D]. Munich: Technical University of Munich&DLR, 2005.

    [10] [10] HADDADIN S, SCHAFFER A A, HIRZINGER G. Safety evaluation of physical human-robot interaction via crash-testing [C]. In Robotics: Science and Systems Conference 2007 (RSS2007), Atlanta, USA:2007:1-8.

    [11] [11] IKUTA K, ISHII H, NOKATA M. Safety evaluation method of design and control for human-care robots [J]. The International Journal of Robotics Research, 2003, 22(5):281-297.

    [12] [12] KALLIERIS D. Personal Communication [M].Washington: SAE Press, 2007.

    [13] [13] HEINZMANN J, ZELINSKY A. Quantitative safety guarantees for physical human-robot interaction [J]. The International Journal of Robotics Research, 2003, 22(7-8): 479-504.

    [14] [14] LAFFRANCHI M, TSAGARAKIS N G, CALDWELL D G. Safe human robot interaction via energy regulation control [C]. International Conference on Intelligent Robotics and Systems, St. Louis, USA:2009:35-41.

    [15] [15] HADDADIN S, SCHAFFER A A, HIRZINGER G. Safe physical human-robot interaction: measurements, analysis and new insights [J]. Robotics Research, 2010, 66:395-407.

    [16] [16] SALISBURY K, TOWNSEND W, EBERMAN B, et al.. Preliminary design of a whole-arm manipulation system (WAMS)[C]. Proceedings of 1988 IEEE International Conference on Robotics and Automation, Philadelphia, PA USA:1988:254-260.

    [17] [17] HIRZINGER G, SPORER N, SCHAFFER A A, et al.. DLR’s torque-controlled lightweight robot III-are we reaching the technological limits now [C]. Proceedings of 2002 IEEE International Conference Robotics and Automation, Washington DC, USA:2002: 1710-1716.

    [18] [18] XIONG G L, XIE Z W, et al.. Dynamic surface control-backstepping based impedance control for 5-DOF flexible joint robots [J]. Journal of Central South University of Technology, 2010, 4(17):807-815.

    [19] [19] YAMADA Y, HIRASAWA Y, HUANG S, et al.. Human-robot contact in the safeguarding space [J]. IEEE/ASME Transactions on Mechatronics, 1997, 2 (4):230-236.

    [20] [20] LIM H O. TANIE K. Collision-tolerant control of human-friendly robot with viscoelastic trunk [J]. IEEE/ASME Transactions on Mechatronics, 1999, 4(4):417-427.

    [21] [21] ZOLLO L, SICILIANO B, LASCHI C, et al.. Guglielmelli, an impedance-compliance control for a cable-actuated robot [C]. Proceedings of 2002 IEEE/RSJ International Conference on Intelligent Robots and System, Lausanne, Switzerland:2002:2268-2273.

    [22] [22] PERVEA A, LIM Y, PARK J. SpiderBot- II: Design, control and posture balancing experimentation[C]. Proceedings of 1st Korean Intelligent Robot Summer Conference. Jeju Island, Korea:2006:288-295.

    [23] [23] ELKMANN N, FRITZSCHE M, SCHULENBURG E. Tactile sensing for safe physical human-robot interaction [C]. The 4th International Conference on Advance in Computer-Human Interactions, Gosier, Guadeloupe, France:2011:212-217.

    [24] [24] RYU J, KIM B, FARAHANI H S, et al.. A new silver robot platform for the elderly and the handicapped: SpiderBot-assistance scenario and concept design [J]. International Journal of Human-Friendly Welfare Robotic Systems, 2004, 5(3):9-16.

    [25] [25] YANAI N, YAMAMOTO M, MOHRI A. Anti-sway control for wire-suspended mechanism based on dynamics compensation [C]. Proceedings of the 2002 IEEE International Conference on Robotics and Automation, Washington, DC, USA:2002: 4287-4292.

    [26] [26] ZINN M, KHATIB O, ROTH B,et al.. Playing it safe [J]. IEEE Robotics & Automation Magazine, 2004, 11(2):12-21.

    [27] [27] LAURIN K F, COLGATE J E, CARNES S D R. Design of components for programmable passive impedance [C]. Proceedings of 1991 IEEE International Conference on Robotics and Automation, Sacramento, California California, USA:1991:1476-1481.

    [28] [28] MORITA T, SUGANO S. Design and development of a new robot joint using a mechanical impedance adjuster [C]. Proceedings of 1995 IEEE International Conference on Robotics and Automation, Nagoya, Japan: ICRA, 1995:2469-2475.

    [29] [29] VISCHER D, KHATIB O. Design and development of high-performance torque-controlled joints [J]. IEEE Transactions on Robotics and Automation, 1995, 11(4):537-544.

    [30] [30] PRATT A,WILLIAMSON M M. Series elastic actuators [C]. Proceedings of 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems,‘Human Robot Interaction and Cooperative Robots,’Pittsburgh, PA, USA:1995: 399-406.

    [31] [31] ZINN M, KHATIB O, ROTH B, et al.. A new actuation approach for human friendly robot design [C]. International Conference on Robotics and Automation, LA, USA:2004:249-254.

    [32] [32] PALLI G, MELCHIORRI C. Interaction force control of robots with variable stiffness actuation [C]. The 18th IFAC world congress, Milano, Italy:2011:13504-13509.

    [33] [33] TONIETTI G, SCHIAVI R, BOCCHI A. Design and control of a variable stiffness actuator for safe and fast physical human/robot interaction [C]. Proceedings of 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain:2005:526-531.

    [34] [34] JIUN Y K, HAN P H, YEN T C. Coupled elastic actuation development for robots as an intrinsic compromise between performance and safety [C]. International Conference on Advance Intelligent Mechatronics, Singapore:2009:14-17.

    [35] [35] REN J W, HAN P H. Active variable stiffness elastic actuator:design and application for safe phyiscal human-robot interaction [C]. International Conference on Robotics and Biomimetics, Tianjin, China:2010:1417-1422.

    [36] [36] LAUZIER N, GOSSELIN C. Series clutch actuator for safe physical human-robot interaction [C]. International Conference on Robotics and Automation, Shanghai, China:2011:5401-5406.

    [37] [37] SCHAFFER A A, EIBERFER O, FUCHS M, et al.. Anthropomorphic soft robotics—from torque control to variable intrinsic compliance [J]. Robotics Research, 2011, 70:185-207.

    [38] [38] LAUZIER N, GRENIER M, GOSSELIN C. 2 DOF cartesian force limiting device for safe physical human-robot interaction [C]. International Conference on Robotics and Automation, Kobe, Japan:2009:253-257.

    [39] [39] LAUZIER N, GOSSELIN C. 3-DOF cartesian force limiting device based on delta architecture for safe physical human-robot interaction [C]. International Conference on Robotics and Automation, Anchorage, Alaska, USA:2010:3420-3425.

    [40] [40] DONG J H, HYUN S Y, JUNG W P, et al.. Variable stiffness mechanism for human-friendly robots [J]. Mechanism and Machine Theory, 2010, 45(6):880-897.

    [41] [41] GOSWAMI, PESHKIN M A, COLGATE J E. Passive robotics: an exploration of mechanical computation [C]. Proceedings of 1990 IEEE International Conference on Robotics and Automation, San Diego, USA:1990:279-284.

    [42] [42] HIRATA Y, HARA A, KOSUGE K. Passive-type intelligent walking support system ‘RT Walker’[C]. Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2004), Sendai, Japan:2004:3871-3876.

    [43] [43] PESHKIN M A, COLGATE J E. Cobots [J]. Industrial Robot, 1999, 26 (5):335-341.

    [44] [44] KULIC D, CROFT E A. Safe planning for humanrobot interaction [J]. Journal of Robotic Systems, 2005, 22(7):383-396.

    [45] [45] SANTIS A D, SCHAFFER A A, OTT C, et al.. The skeleton algorithm for self-collision avoidance of a humanoid manipulator [C]. International Conference on Advance Intelligent Mechatronics, Zurich, Switzerland:2007:1-6.

    [46] [46] KULIC D, CROFT E A. Real-time safety for human-robot interaction [J]. Robotics and Autonomous Systems, 2006, 54(1):1-12.

    [47] [47] KHATIB O. Real time obstacle avoidance for manipulators and mobile robots [J]. The International Journal of Robotics Research, 1986, 5(1): 90-98.

    [48] [48] KULIC D, CROFT E A. Pre-collision safety strategies for human-robot interaction [J]. Autonomous Robot, 2007, 22(2):149-164.

    [49] [49] HADDADIN S, SCHAFFER A A, LUCA A D, et al.. Collision detection and reaction: a contribution to safe physical human-robot interaction [C]. International Conference on Intelligent Robots and Systems, Nice, France:2008:3356-3363.

    [50] [50] PARUSEL S, HADDADIN S, CHAFFER A A. Modular state-based behavior control for safe human-robot interaction: A lightweight control architecture for lightweight robot [C]. International Conference on Robots and Automation, Shanghai, China:2011:4298-4305.

    [51] [51] TSETSERUKOU D, TADAKUMA R, KAJIMOTO H, et al.. Intelligent variable joint impedance control and development of a new whole-sensitive anthropomorphic robot arm [C]. International Symposium on Computational Intelligent in Robotics and Automation, Jacksonville, FL, USA:2007:338-343.

    [52] [52] SETSERUKOU D, TADAKUMA R, KAJIMOTO H, et al.. Towards safe human-robot interaction: joint impedance control of a new teleoperated robot arm [C]. International Conference on Robot&Human Interactive Communication, Jeju, Korea:2007:860-865.

    [53] [53] TSETSERUKOU D, KAWAKAMI N. Design, control and evaluation of a whole-sensitive robot arm for physical human-robot interaction [J]. International Journal of Humanoid Robotics, 2009, 6(4): 699-725.

    [54] [54] CALINON S, SARDELLITTI I, CALDWELL D G. Learning-based control strategy for safe human-robot interaction exploiting task and robot redundancies [C]. International Conference on Intelligent Robotics and Systems, Taipei, Taiwan, China:2010: 249-254.

    [55] [55] LI Y, GE S S, YANG C. Impedance control for Multi-point human-robot interaction [C]. The 8th Asian Control Conference, Kaohsiung, Taiwan, China:2011:1187-1192.

    [56] [56] XIONG G L, CHEN H C, ZHANG R H, et al.. Control of human-robot interaction flexible joint lightweight manipulator based joint torque sensors [C]. The 7th International Conference on MEMS, NANO and Smart Systems, Kuala Lumpur, Malaysia:2011:5022-5029.

    [57] [57] KOSUGE K, MORINAGA S. Beyond motion control for dependable robots in human environment [C]. 2nd IARP/IEEE-RAS Joint Workshop on Technical Challenge for Dependable Robots in Human Environments, LAAS-CNRS, Toulouse, France:2002.

    [58] [58] YU H, SPENKO M, DUBOWSKY S. An adaptive shared control system for an intelligent mobility aid for the elderly[J]. Autonomous Robots, 2003, 15 (1):53-66.

    [59] [59] LASCHI C, TETI G, TAMBURRINI G, et al.. Adaptable semi-autonomy in personal robots [C]. Proceedings of 10th IEEE International Workshop on Robot and Human Interactive Communication, Bordeaux, Paris, France:2001:152-157.

    [60] [60] NAKAUCHI Y, NOGUCHI K, SOMWONG P, et al.. Vivid room: human intention detection and activity support environment for ubiquitous autonomy [C]. Proceedings of 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, USA:2003:773-778.

    Tools

    Get Citation

    Copy Citation Text

    XIONG Gen-liang, CHEN Hai-chu, LIANG Fa-yun, DONG Zeng-wen. Research and development statue of physical human-robot interaction[J]. Optics and Precision Engineering, 2013, 21(2): 356

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 1, 2012

    Accepted: --

    Published Online: Feb. 26, 2013

    The Author Email: Gen-liang XIONG (xgl.lijing@yahoo.com.cn)

    DOI:10.3788/ope.20132102.0356

    Topics