Journal of Terahertz Science and Electronic Information Technology , Volume. 19, Issue 5, 753(2021)

Silicon-based terahertz technologies and future trends

ZHANG Lei, FU Haipeng, MENG Fanyi, WANG Keping, and MA Kaixue*
Author Affiliations
  • [in Chinese]
  • show less
    References(37)

    [1] [1] NICHOLS E F,TEAR J D. Joining the infrared and electric wave spectra[J]. Proceedings of the National Academy of Sciences of the United States of America, 1923,9(6):211-214.

    [4] [4] HILLGER P,GRZYB J,JAIN R,et al. Terahertz imaging and sensing applications with silicon-based technologies[J]. IEEE Transactions on Terahertz Science and Technology, 2019,9(1):1-19.

    [5] [5] RODRIGUEZ-VAZQUEZ P,GRZYB J,SARMAH N,et al. A 65 Gbps QPSK one meter wireless link operating at a 225–255 GHz tunable carrier in a SiGe HBT technology[C]//2018 IEEE Radio and Wireless Symposium(RWS). Anaheim,CA, USA:IEEE, 2018:146-149.

    [6] [6] HU Z,KAYNAK M,HAN R. High power radiation at 1 THz in silicon:a fully scalable array using a multi-functional radiating mesh structure[J]. IEEE Journal of Solid-State Circuits, 2018,53(5):1313-1327.

    [7] [7] AHMAD Z,LEE M,KENNETH K O. 20.5 1.4 THz,13 dBm-EIRP frequency multiplier chain using symmetric-and asymmetric-CV varactors in 65 nm CMOS[C]//2016 IEEE International Solid-State Circuits Conference(ISSCC). San Francisco,CA, USA:IEEE, 2016:350-351.

    [10] [10] ?JEFORS E,GRZYB J,ZHAO Y,et al. A 820 GHz SiGe chipset for terahertz active imaging applications[C]//2011 IEEE International Solid-State Circuits Conference. San Francisco,CA,USA:IEEE, 2011:224-226.

    [11] [11] GUO K,ZHANG Y,REYNAERT P. A 0.53 THz subharmonic injection-locked phased array with 63 μW radiated power in 40 nm CMOS[J]. IEEE Journal of Solid-State Circuits, 2018,54(2):380-391.

    [12] [12] GUIMARAES G,REYNAERT P. 29.6 A 660-to-676 GHz 4×2 oscillator-radiator array with intrinsic frequency-filtering feedback for harmonic power boost achieving 7.4 dBm EIRP in 40 nm CMOS[C]//2020 IEEE International Sol-State Circuits Conference(ISSCC).[s.n.]:IEEE, 2020:450-452.

    [13] [13] JAIN R,HILLGER P,J GRZYB,et al. 29.1 A 0.42 THz 9.2 dBm 64 pixel source-array SoC with spatial modulation diversity for computational terahertz imaging[C]//2020 IEEE International Solid-State Circuits Conference(ISSCC).[s.n.]: IEEE, 2020:440-442.

    [14] [14] JALILI H,MOMENI O. A 0.46 THz 25 element scalable and wideband radiator array with optimized lens integration in 65 nm CMOS[J]. IEEE Journal of Solid-State Circuits, 2020,55(9):2387-2400.

    [15] [15] HAN R,ZHANG Y,COQUILLAT D,et al. 280 GHz Schottky diode detector in 130 nm digital CMOS[C]//Custom Integrated Circuits Conference. San Jose,CA,USA:IEEE, 2010:1-4.

    [16] [16] HAN R,ZHANG Y,COQUILLAT D,et al. A 280 GHz Schottky diode detector in 130 nm digital CMOS[J]. IEEE Journal of Solid-State Circuits, 2011,46(11):2602-2612.

    [17] [17] AL-HADI R,SHERRY H,GRZYB J,et al. A 1 k-pixel video camera for 0.7–1.1 Terahertz imaging applications in 65 nm CMOS[J]. IEEE Journal of Solid-State Circuits, 2012,47(12):2999-3012.

    [18] [18] HAN R,JIANG C,MOSTAJERAN A,et al. A SiGe terahertz heterodyne imaging transmitter with 3.3 mW radiated power and fully-integrated Phase-Locked Loop[J]. IEEE Journal of Solid-State Circuits, 2015, 50(2):2935-2947.

    [19] [19] JIANG C,MOSTAJERAN A,HAN R,et al. 25.5 A 320 GHz subharmonic-mixing coherent imager in 0.13 m SiGe BiCMOS[C]//2016 IEEE International Solid-State Circuits Conference(ISSCC). San Francisco,CA,USA:IEEE, 2016:432-434.

    [20] [20] HAN R,JIANG C,MOSTAJERAN A,et al. 25.5 A 320 GHz phase-locked transmitter with 3.3 mW radiated power and 22.5 dBm EIRP for heterodyne THz imaging systems[C]//2015 IEEE International Solid-State Circuits Conference. San Francisco, CA,USA:IEEE, 2016:1-3.

    [21] [21] HU Z,WANG C,HAN R. A 32 unit 240 GHz heterodyne receiver array in 65 nm CMOS with array-wide phase locking[J]. IEEE Journal of Solid-State Circuits, 2019,54(5):1216-1227.

    [22] [22] MOSTAJERAN A,NAGHAVI S M,EMADI M,et al. A high-resolution 220 GHz ultra-wideband fully integrated ISAR imaging system[J]. IEEE Transactions on Microwave Theory and Techniques, 2018,67(1):429-442.

    [23] [23] GRZYB J,HEINEMANN B,PFEIFFER U R. A 0.55 THz near-field sensor with a μm-range lateral resolution fully integrated in 130 nm SiGe BiCMOS[J]. IEEE Journal of Solid State-Circuits, 2016,51(12):3063-3077.

    [24] [24] HILLGER P,JAIN R,GRZYB J,et al. A 128 pixel system-on-a-chip for real-time super-resolution terahertz near-field imaging[J]. IEEE Journal of Solid-State Circuits, 2018,53(12):3599-3612.

    [25] [25] LIU Z Y,LIU L Y,YANG J,et al. A fully-integrated 860 GHz CMOS terahertz sensor[C]//2015 IEEE Asian Solid-State Circuits Conference. Xiamen,China:IEEE, 2016:1-4.

    [26] [26] FANG T,LIU Z Y,LIU L Y,et al. Detection of 3.0 THz wave with a detector in 65 nm standard CMOS process[C]//2017 IEEE Asian Solid-State Circuits Conference(A-SSCC). Seoul,Korea(South):IEEE, 2017:189-192.

    [27] [27] SARMAH N,GRZYB J,STATNIKOV K,et al. A fully integrated 240 GHz direct-conversion quadrature transmitter and receiver chipset in SiGe technology[J]. IEEE Transactions on Microwave Theory & Techniques, 2016,64(2):562-574.

    [28] [28] HUSSEIN E M,ANDREA M,WANG R,et al. Wideband 240 GHz transmitter and receiver in BiCMOS technology with 25 Gbit/s data rate[J]. IEEE Journal of Solid-State Circuits, 2018,53(9):2532-2542.

    [29] [29] LEE S,R DONG,YOSHIDA T,et al. 9.5 an 80 Gb/s 300 GHz-band single-chip CMOS transceiver[C]//2019 IEEE International Solid-State Circuits Conference (ISSCC). San Francisco,CA,USA:IEEE, 2019:170-172.

    [30] [30] ABDO I,FUJIMURA T,MIURA T,et al. A 300 GHz wireless transceiver in 65 nm CMOS for IEEE802.15.3d using push-push subharmonic mixer[C]//2020 IEEE/MTT-S International Microwave Symposium(IMS). Denver,CO,USA:IEEE, 2020:623-626.

    [31] [31] CHEN Z,DENG W,JIA H,et al. A 122-168 GHz radar/communication fusion-mode transceiver with 30 GHz chirp bandwidth, 13 dBm psat,and 8.3 dBm OP1dB in 28 nm CMOS[C]//2021 Symposium on VLSI Circuits.[s.n.]:IEEE, 2021:1-2.

    [32] [32] TOWNLEY A,SWIRHUN P,TITZ D,et al. A 94 GHz 4TX–4RX phased-array FMCW radar transceiver with antenna-in-package[J]. IEEE Journal of Solid-State Circuits, 2017,52(5):1245-1259.

    [33] [33] NG H J,KUCHARSKI M,AHMAD W,et al. Multi-purpose fully differential 61 and 122 GHz radar transceivers for scalable MIMO sensor platforms[J]. IEEE Journal of Solid-State Circuits, 2017,52(9):2242-2255.

    [34] [34] VISWESWARAN A,VAESEN K,SINHA S,et al. 9.4 A 145 GHz FMCW-radar transceiver in 28 nm CMOS[C]//2019 IEEE International Solid-State Circuits Conference(ISSCC). San Francisco,CA,USA:IEEE, 2019:168-170.

    [35] [35] VISWESWARAN A,VAESEN K,GLASSEE M,et al. A 28 nm CMOS based 145 GHz FMCW radar:system,circuits,and characterization[J]. IEEE Journal of Solid-State Circuits, 2021,56(7):1975-1993.

    [36] [36] YI X,WANG C,LU M,et al. 4.8 A terahertz FMCW comb radar in 65nm CMOS with 100GHz bandwidth[C]//2020 IEEE International Solid-State Circuits Conference(ISSCC). San Francisco,CA,USA:IEEE, 2020:90-92.

    [37] [37] YI X,WANG C,CHEN X,et al. A 220-to-320 GHz FMCW radar in 65 nm CMOS using a frequency-comb architecture[J]. IEEE Journal of Solid-State Circuits, 2020,56(2):327-339.

    [38] [38] SHAHRAMIAN S,HOLYOAK M J,SINGH A,et al. A fully integrated 384-element, 16-tile,W-band phased array with self- alignment and self-test[J]. IEEE Journal of Solid-State Circuits, 2019,54(9):2419-2434.

    [39] [39] DUAN Z,PAN D,WU B,et al. A 76-81GHz FMCW transceiver with 3-transmit, 4-receive paths and 15 dBm output power for automotive radars[C]//2019 IEEE Radio Frequency Integrated Circuits Symposium(RFIC).[s.n.]:IEEE, 2019:39-42.

    [40] [40] MA S,WU T,ZHANG J,et al. A 151-to-173 GHz FMCW transmitter achieving 14 dBm psat with synchronized injection-locked power amplifiers and five in-phase power combining doublers in 65 nm CMOS[C]//2018 IEEE Radio Frequency Integrated Circuits Symposium(RFIC). Philadelphia,PA,USA:IEEE, 2018:268-271.

    Tools

    Get Citation

    Copy Citation Text

    ZHANG Lei, FU Haipeng, MENG Fanyi, WANG Keping, MA Kaixue. Silicon-based terahertz technologies and future trends[J]. Journal of Terahertz Science and Electronic Information Technology , 2021, 19(5): 753

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jun. 15, 2021

    Accepted: --

    Published Online: Nov. 15, 2021

    The Author Email: Kaixue MA (makaixue@tju.edu.cn)

    DOI:10.11805/tkyda2021252

    Topics