Photonics Research, Volume. 9, Issue 12, 2501(2021)

Dual-wavelength in-line digital holography with untrained deep neural networks

Chen Bai1、†, Tong Peng1,2、†, Junwei Min1, Runze Li1, Yuan Zhou1, and Baoli Yao1,3、*
Author Affiliations
  • 1State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China
  • 2Xi’an Jiaotong University, Xi’an 710049, China
  • 3Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266200, China
  • show less
    References(40)

    [1] D. Gabor. A new microscopic principle. Nature, 161, 777-778(1948).

    [2] G. Popescu, T. Ikeda, K. Goda, C. A. Best-Popescu, M. Laposata, S. Manley, R. R. Dasari, K. Badizadegan, M. S. Feld. Optical measurement of cell membrane tension. Phys. Rev. Lett., 97, 218101(2006).

    [3] M. Kim. Digital holographic microscopy. Digital Holographic Microscopy: Principles, Techniques, and Application, 162(2011).

    [4] H. Wang, M. Lyu, G. Situ. eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction. Opt. Express, 26, 22603-22614(2018).

    [5] J. L. Almeida, E. Comunello, A. Sobieranski, A. M. da R. Fernandes, G. S. Cardoso. Twin-image suppression in digital in-line holography based on wave-front filtering. Pattern Anal. Appl., 24, 907-914(2021).

    [6] J. Min, M. Zhou, X. Yuan, K. Wen, X. Yu, T. Peng, B. Yao. Optical thickness measurement with single-shot dual-wavelength in-line digital holography. Opt. Lett., 43, 4469-4472(2018).

    [7] J. Nadeau, Y. Park, G. Popescu. Methods in quantitative phase imaging in life science. Methods, 136, 1-3(2018).

    [8] S. Y. Tong, H. Li, H. Huang. Energy extension in three-dimensional atomic imaging by electron emission holography. Phys. Rev. Lett., 67, 3102-3105(1991).

    [9] M. Shan, L. Liu, Z. Zhong, B. Liu, G. Luan, Y. Zhang. Single-shot dual-wavelength off-axis quasi-common-path digital holography using polarization-multiplexing. Opt. Express, 25, 26253-26261(2017).

    [10] Y. Lee, Y. Ito, T. Tahara, J. Inoue, P. Xia, Y. Awatsuji, K. Nishio, S. Ura, O. Matoba. Single-shot dual-wavelength phase unwrapping in parallel phase-shifting digital holography. Opt. Lett., 39, 2374-2377(2014).

    [11] J. Gass, A. Dakoff, M. K. Kim. Phase imaging without 2π ambiguity by multiwavelength digital holography. Opt. Lett., 28, 1141-1143(2003).

    [12] D. G. Abdelsalam, R. Magnusson, D. Kim. Single-shot dual-wavelength digital holography based on polarizing separation. Appl. Opt., 50, 3360-3368(2011).

    [13] A. Khmaladze, R. L. Matz, C. Zhang, T. Wang, M. M. B. Holl, Z. Chen. Dual-wavelength linear regression phase unwrapping in three-dimensional microscopic images of cancer cells. Opt. Lett., 36, 912-914(2011).

    [14] D. G. Abdelsalam, D. Kim. Two-wavelength in-line phase-shifting interferometry based on polarizing separation for accurate surface profiling. Appl. Opt., 50, 6153-6161(2011).

    [15] Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, M. Segev. Phase retrieval with application to optical imaging: a contemporary overview. IEEE Signal Process. Mag., 32, 87-109(2015).

    [16] T. Latychevskaia, H.-W. Fink. Solution to the twin image problem in holography. Phys. Rev. Lett., 98, 233901(2007).

    [17] S. M. F. Raupach. Cascaded adaptive-mask algorithm for twin-image removal and its application to digital holograms of ice crystals. Appl. Opt., 48, 287-301(2009).

    [18] W. Zhang, L. Cao, D. J. Brady, H. Zhang, J. Cang, H. Zhang, G. Jin. Twin-image-free holography: a compressive sensing approach. Phys. Rev. Lett., 121, 93902-93907(2018).

    [19] C. Bai, M. Zhou, J. Min, S. Dang, X. Yu, P. Zhang, T. Peng, B. Yao. Robust contrast-transfer-function phase retrieval via flexible deep learning networks. Opt. Lett., 44, 5141-5144(2019).

    [20] X. Zhang, Y. Chen, K. Ning, C. Zhou, Y. Han, H. Gong, J. Yuan. Deep learning optical-sectioning method. Opt. Express, 26, 30762-30772(2018).

    [21] Y. Rivenson, Y. Zhang, H. Günaydın, D. Teng, A. Ozcan. Phase recovery and holographic image reconstruction using deep learning in neural networks. Light Sci. Appl., 7, 17141(2018).

    [22] K. Zhang, W. Zuo, Y. Chen, D. Meng, L. Zhang. Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans. Image Process., 26, 3142-3155(2017).

    [23] Y. Romano, M. Elad, P. Milanfar. The little engine that could: regularization by denoising (RED). SIAM J. Imaging Sci., 10, 1804-1844(2017).

    [24] F. Wang, Y. Bian, H. Wang, M. Lyu, G. Pedrini, W. Osten, G. Barbastathis, G. Situ. Phase imaging with an untrained neural network. Light Sci. Appl., 9, 77(2020).

    [25] D. Ulyanov, A. Vedaldi, V. Lempitsky. Deep image prior. IEEE Conference on Computer Vision and Pattern Recognition (CVPR)(2018).

    [26] Y. Gandelsman, A. Shocher, M. Irani. Double-DIP’: unsupervised image decomposition via coupled deep-image-priors. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 11026-11035(2019).

    [27] H. Li, X. Chen, Z. Chi, C. Mann, A. Razi. Deep DIH: single-shot digital in-line holography reconstruction by deep learning. IEEE Access, 8, 202648-202659(2020).

    [28] R. Heckel, P. Hand. Deep decoder: concise image representations from untrained non-convolutional networks(2019).

    [29] J. Min, B. Yao, P. Gao, R. Guo, B. Ma, J. Zheng, M. Lei, S. Yan, D. Dan, T. Duan. Dual-wavelength slightly off-axis digital holographic microscopy. Appl. Opt., 51, 191-196(2012).

    [30] D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, S. Lim. Compressive holography. Opt. Express, 17, 13040-13049(2009).

    [31] H. Zhang, L. Cao, H. Zhang, W. Zhang, G. Jin, D. J. Brady. Efficient block-wise algorithm for compressive holography. Opt. Express, 25, 24991-25003(2017).

    [32] C. Bai, C. Liu, H. Jia, T. Peng, J. Min, M. Lei, X. Yu, B. Yao. Compressed blind deconvolution and denoising for complementary beam subtraction light-sheet fluorescence microscopy. IEEE Trans. Biomed. Eng., 66, 2979-2989(2019).

    [33] Q. Huynh-Thu, M. Ghanbari. Scope of validity of PSNR in image/video quality assessment. Electron. Lett., 44, 800-802(2008).

    [34] Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli. Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process., 13, 600-612(2004).

    [35] O. Ronneberger, P. Fischer, T. Brox. U-Net: convolutional networks for biomedical image segmentation. Conference on Medical Image Computing and Computer-Assisted Intervention(2015).

    [36] X. Liu, M. Tanaka, M. Okutomi. Single-image noise level estimation for blind denoising. IEEE Trans. Image Process., 22, 5226-5237(2013).

    [37] F. Crete, N. Nicolas. The blur effect: perception and estimation with a new no-reference perceptual blur metric. Proc. SPIE, 6492, 64920I(2007).

    [38] J. Min, B. Yao, V. Trendafilova, S. Ketelhut, L. Kastl, B. Greve, B. Kemper. Quantitative phase imaging of cells in a flow cytometry arrangement utilizing Michelson interferometer-based off-axis digital holographic microscopy. J. Biophoton., 12, e201900085(2019).

    [39] Y. Yao, B. Abidi, N. Doggaz, M. Abidi. Evaluation of sharpness measures and search algorithms for the auto focusing of high-magnification images. Proc. SPIE, 6246, 62460G(2006).

    [40] J. Lim, A. B. Ayoub, D. Psaltis, M. Abidi. Three-dimensional tomography of red blood cells using deep learning. Adv. Photonics, 2, 026001(2020).

    Tools

    Get Citation

    Copy Citation Text

    Chen Bai, Tong Peng, Junwei Min, Runze Li, Yuan Zhou, Baoli Yao, "Dual-wavelength in-line digital holography with untrained deep neural networks," Photonics Res. 9, 2501 (2021)

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Holography, Gratings, and Diffraction

    Received: Aug. 20, 2021

    Accepted: Oct. 27, 2021

    Published Online: Nov. 30, 2021

    The Author Email: Baoli Yao (yaobl@opt.ac.cn)

    DOI:10.1364/PRJ.441054

    Topics