Journal of Innovative Optical Health Sciences, Volume. 11, Issue 6, 1850038(2018)
Unsupervised calibration for noninvasive glucose-monitoring devices using mid-infrared spectroscopy
[1] [1] J. Yadav, A. Rani, V. Singh, B. M. Murari, “Prospects and limitations of non-invasive blood glucose monitoring using near-infrared spectroscopy,” Biomed. Signal. Process. Control 18, 214–227 (2015).
[2] [2] K. Yamakoshi, Y. Yamakoshi, “Pulse glucometry: A new approach for noninvasive blood glucose measurement using instantaneous differential near-infrared spectrophotometry,” J. Biomed. Opt. 11, 054028 (2006).
[3] [3] J. T. Olesberg, M. A. Arnold, C. Mermelstein, J. Schmitz, J. Wagner, “Tunable laser diode system for noninvasive blood glucose measurements,” Appl. Spectrosc. 59, 1480–1484 (2005).
[4] [4] S. Liakat, K. A. Bors, L. Xu, C. M. Woods, J. Doyle, C. F. Gmachl, “Noninvasive in vivo glucose sensing on human subjects using mid-infrared light,” Biomed. Opt. Express. 5, 2397–2404 (2014).
[5] [5] A. M. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt. 10, 031114 (2005). Crossref, ISI, Google Scholar
[6] [6] H. von Lilienfeld-Toal, M. Weidenmüller, A. Xhelaj, W. Mantele, “A novel approach to non-invasive glucose measurement by mid-infrared spectroscopy: The combination of quantum cascade lasers (QCL) and photoacoustic detection,” Vib. Spectrosc. 38, 209–215 (2005).
[7] [7] M. A. Pleitez, T. Lieblein, A. Bauer, O. Hertzberg, H. von Lilienfeld-Toal, W. Mantele, “In vivo noninvasive monitoring of glucose concentration in human epidermis by mid-infrared pulsed photoacoustic spectroscopy,” Anal. Chem. 85, 1013–1020 (2013).
[8] [8] S. K. Vashist, “Non-invasive glucose monitoring technology in diabetes management: A review,” Anal. Chim. Acta 750, 16–27 (2012).
[9] [9] K. Maruo, T. Oota, M. Tsurugi, T. Nakagawa, H. Arimoto, M. Tamura, Y. Ozaki, Y. Yamada, “New methodology to obtain a calibration model for noninvasive near-infrared blood glucose monitoring,” Appl. Spectrosc. 60, 441–449 (2006).
[10] [10] A. Caduff, M. Zanon, M. Mueller, P. Zakharov, Y. Feldman, O. De Feo, M. Donath, W. A. Stahel, M. S. Talary, “The effect of a global, subject, and device-specific model on a noninvasive glucose monitoring multisensor system,” J. Diabetes Sci.Technol. 9, 865–872 (2015).
[11] [11] I. Harman-Boehm, A. Gal, A. M. Raykhman, J. D. Zahn, E. Naidis, Y. Mayzel, “Noninvasive glucose monitoring: A novel approach,” J. Diabetes Sci. Technol. 3, 253–260 (2009).
[12] [12] P. P. Pai, P. K. Sanki, S. Sarangi, S. Banerjee, “Modelling, verification, and calibration of a photoacoustics based continuous non-invasive blood glucose monitoring system,” Rev. Sci. Instrum. 86, 064901 (2015).
[13] [13] Y. Wang, Y. Fan, P. Bhatt, C. Davatzikos, “High-dimensional pattern regression using machine learning: From medical images to continuous clinical variables,” NeuroImage 50, 1519–1535 (2010).
[14] [14] R. C. Deo, “Machine learning in medicine,” Circulation 132, 1920–1930 (2015).
[15] [15] K. R. Foster, R. Koprowski, J. D. Skufca, “Machine learning, medical diagnosis, and biomedical engineering research — commentary,” Biomed. Eng. Online 13, 94 (2014).
[16] [16] L. Duan, D. Xu, I. W. H. Tsang, “Domain adaptation from multiple sources: A domain-dependent regularization approach,” IEEE Trans. Neural Netw. Learn. Syst. 23, 504–518 (2012).
[17] [17] H. M. Heise, R. Marbach, “Human oral mucosa studies with varying blood glucose concentration by non-invasive ATR-FT-IR-spectroscopy,” Cell. Mol. Biol. 44, 899–912 (1998). Google Scholar
[18] [18] Y. Abe, Y. Matsuura, Y. W. Shi, Y. Wang, H. Uyama, M. Miyagi, “Polymer-coated hollow fiber for CO(2) laser delivery,” Opt. Lett. 23, 89–90 (1998).
[19] [19] Y. Matsuura, S. Kino, T. Katagiri, “Hollow-fiber-based flexible probe for remote measurement of infrared attenuated total reflection,” Appl. Opt. 48, 5396–5400 (2009).
[20] [20] S. Kino, Y. Tanaka, Y. Matsuura, “Blood glucose measurement by using hollow optical fiber-based attenuated total reflection probe,” J. Biomed. Opt. 19, 057010 (2014).
[21] [21] S. Kino, S. Omori, T. Katagiri, Y. Matsuura, “Hollow optical-fiber based infrared spectroscopy for measurement of blood glucose level by using multi-reflection prism,” Biomed. Opt. Express 7, 701–708 (2016).
[22] [22] R. Kasahara, S. Kino, S. Soyama, Y. Matsuura, “Noninvasive robust glucose monitoring using mid-infrared absorption spectroscopy based on a few wavenumbers,” Biomed. Opt. Express 9, 289–302 (2018).
[23] [23] M. R. Robinson, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, P. L. Robinson, “Noninvasive glucose monitoring in diabetic patients: A preliminary evaluation,” Clin. Chem. 38, 1618–1622 (1992). ISI, Google Scholar
[24] [24] I. Barman, C. R. Kong, N. C. Dingari, R. R. Dasari, M. S. Feld, “Development of robust calibration models using support vector machines for spectroscopic monitoring of blood glucose,” Anal. Chem. 82, 9719–9726 (2010).
[25] [25] S. Ramasahayam, S. H. Koppuravuri, L. Arora, S. R. Chowdhury, “Noninvasive blood glucose sensing using near infrared spectroscopy and artificial neural networks based on inverse delayed function model of neuron,” J. Med. Syst. 39, 166 (2015).
[26] [26] C. Fischbacher, K.-U. Jagemann, K. Danzer, U. A. Müller, L. Papenkordt, J. Schüler, “Enhancing calibration models for non-invasive near-infrared spectroscopical blood glucose determination,” Fresenius J. Anal. Chem. 359, 78–82 (1997).
[27] [27] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marchand, V. Lempitsky, U. Dogan, M. Kloft, F. Orabona, T. Tommasi, “Domain-adversarial training of neural networks,” J. Mach. Learn. Res. 17, 1–35 (2016). Google Scholar
[28] [28] M. S. Boyne, D. M. Silver, J. Kaplan, C. D. Saudek, “Timing of changes in interstitial and venous blood glucose measured with a continuous subcutaneous glucose sensor,” Diabetes 52, 2790–2794 (2003).
[29] [29] K. He, X. Zhang, S. Ren, J. Sun, “Delving deep into rectifiers: Surpassing human-level performance on imagenet classification,” IEEE Int. Conf. Computer Vision (IEEE, New York, 2015), pp. 1026–1034. Google Scholar
[30] [30] A. L. Maas, A. Y. Hannun, A. Y. Ng, “Rectifier nonlinearities improve neural network acoustic models,” in Proceedings of the 30th International Conference on Machine Learning (Atlanta, Georgia, USA, 2013), pp. 1–6. Google Scholar
[31] [31] S. Ioffe, C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal covariate shift,” in Proceedings of the 32nd International Conference on Machine Learning, Vol. 37 (Lille, France, 2015), pp. 448–456. Google Scholar
[32] [32] D. P. Kingma, J. L. Ba, “Adam: A method for stochastic optimization,” arXiv:1412.6980. Google Scholar
[33] [33] W. L. Clarke, D. Cox, L. A. Gonder-Frederick, W. Carter, S. L. Pohl, “Evaluating clinical accuracy of systems for self-monitoring of blood glucose,” Diabetes Care 10, 622–628 (1987).
[34] [34] O. Hertzberg, A. Bauer, A. Küderle, M. A. Pleitez, W. Mantele, “Depth-selective photothermal IR spectroscopy of skin: Potential application for non-invasive glucose measurement,” Analyst 142, 495–502 (2017).
[35] [35] J. Y. Sim, C. G. Ahn, E. J. Jeong, B. K. Kim, “In vivo microscopic photoacoustic spectroscopy for non-invasive glucose monitoring invulnerable to skin secretion products,” Sci. Rep. 8, 1–11 (2018).
Get Citation
Copy Citation Text
Ryosuke Kasahara, Saiko Kino, Shunsuke Soyama, Yuji Matsuura. Unsupervised calibration for noninvasive glucose-monitoring devices using mid-infrared spectroscopy[J]. Journal of Innovative Optical Health Sciences, 2018, 11(6): 1850038
Received: Apr. 12, 2018
Accepted: Sep. 17, 2018
Published Online: Dec. 27, 2018
The Author Email: Kasahara Ryosuke (ryohsuke.kasahara@jp.ricoh.com)