International Journal of Extreme Manufacturing, Volume. 6, Issue 3, 32004(2024)

Carbon nanotube integrated circuit technology: purification, assembly and integration

Jianlei Cui... Fengqi Wei and Xuesong Mei* |Show fewer author(s)
Author Affiliations
  • State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049,People’s Republic of China
  • show less
    References(103)

    [1] [1] Haensch W, Nowak E J, Dennard R H, Solomon P M,Bryant A, Dokumaci O H, Kumar A, Wang X,Johnson J B and Fischetti M V 2006 Silicon CMOS devices beyond scaling IBM J. Res. Dev. 50 339–61

    [2] [2] Macilwain C 2005 Computer hardware: silicon down to the wire Nature 436 22–23

    [3] [3] Waldrop M M 2016 The chips are down for Moore’s law Nature 530 144–7

    [4] [4] Xiang R 2022 Atomic precision manufacturing of carbon nanotube—a perspective Int. J. Extrem. Manuf. 4 023001

    [5] [5] Khan H N, Hounshell D A and Fuchs E R H 2018 Science and research policy at the end of Moore’s law Nat.Electron. 1 14–21

    [6] [6] Hoefflinger B 2011 ITRS: the international technology roadmap for semiconductors Chips 2020 ed B Hoefflinger(Springer) pp 161–74

    [7] [7] Chaudhury S and Lorenzo R 2016 Leakage minimization in CMOS VLSI circuits: a brief review Design and Modeling of Low Power VLSI Systems ed M Sharma, R Gautam and M A Khan (IGI Global) pp 71–99

    [8] [8] Service R F 2009 Is silicon’s reign nearing its end? Science323 1000–2

    [9] [9] Cress C D and Datta S 2013 Nanoscale transistors–just around the gate? Science 341 140–1

    [10] [10] Liu L J and Zhang Z Y 2016 Carbon nanotube field-effect transistors: present and future Sci. Sin.: Phys. Mech.Astron. 46 107305

    [11] [11] Liu C C and Zhang Z Y 2021 Carbon-based CMOS integrated circuit technology: development status and future challenges Sci. Sin. 51 1457–73

    [12] [12] Xu H T and Peng L M 2021 Carbon-based integrated circuit technology: development and forecast Front. Data Comput. 3 4–27

    [13] [13] Das A et al 2021 Transistors based on two-dimensional materials for future integrated circuits Nat. Electron.4 786–99

    [14] [14] Iijima S 1991 Helical microtubules of graphitic carbon Nature 354 56–58

    [15] [15] Iijima S and Ichihashi T 1993 Single-shell carbon nanotubes of 1-nm diameter Nature 363 603–5

    [16] [16] McEuen P L, Fuhrer M S and Park H 2002 Single-walled carbon nanotube electronics IEEE Trans. Nanotechnol.1 78–85

    [17] [17] Avouris P 2010 Graphene: electronic and photonic properties and devices Nano Lett. 10 4285–94

    [18] [18] Liao L, Lin Y C, Bao M Q, Cheng R, Bai J W, Liu Y,Qu Y Q, Wang K L, Huang Y and Duan X F 2010 High-speed graphene transistors with a self-aligned nanowire gate Nature 467 305–8

    [19] [19] Zhou K et al 2023 Manufacturing of graphene based synaptic devices for optoelectronic applications Int. J. Extrem.Manuf. 5 042006

    [20] [20] Peng L M, Zhang Z Y and Wang S 2014 Carbon nanotube electronics: recent advances Mater. Today 17 433–42

    [21] [21] De Volder M F L, Tawfick S H, Baughman R H and Hart A J 2013 Carbon nanotubes: present and future commercial applications Science 339 535–9

    [22] [22] Javey A, Guo J, Wang Q, Lundstrom M and Dai H J 2003 Ballistic carbon nanotube field-effect transistors Nature 424 654–7

    [23] [23] Qiu C G, Zhang Z Y, Xiao M M, Yang Y J, Zhong D L and Peng L M 2017 Scaling carbon nanotube complementary transistors to 5-nm gate lengths Science 355 271–6

    [24] [24] Xie Y N, Zhang Z Y, Zhong D L and Peng L M 2019 Speeding up carbon nanotube integrated circuits through three-dimensional architecture Nano Res. 12 1810–6

    [25] [25] Chang S W et al 2019. First demonstration of CMOS inverter and 6T-SRAM based on GAA CFETs structure for 3D-IC applications 2019 IEEE Int. Electron Devices Meeting(IEDM) (IEEE) pp 11.7.1–4

    [26] [26] Rutherglen C, Jain D and Burke P 2009 Nanotube electronics for radiofrequency applications Nat. Nanotechnol. 4 811–9

    [27] [27] Peng L M, Zhang Z Y, Wang S and Liang X L 2014 Carbon based nanoelectronics: materials and devices Sci. Sin.Technol. 44 1071–86

    [28] [28] Zhong D, Liu J X, Xiao M M, Xie Y N, Shi H W, Liu L J, Zhao C Y, Ding L, Peng L M and Zhang Z Y 2022 Twin physically unclonable functions based on aligned carbon nanotube arrays Nat. Electron. 5 424–32

    [29] [29] Karthikeyan A and Mallick P S 2017 Optimization techniques for CNT based VLSI interconnects—a reviewJ. Circuits Syst. Comput. 26 1730002

    [30] [30] Tulevski G S, Franklin A D, Frank D, Lobez J M, Cao Q,Park H, Afzali A, Han S J, Hannon J B and Haensch W 2014 Toward high-performance digital logic technology with carbon nanotubes ACS Nano 8 8730–45

    [31] [31] Simonite T 2014 IBM: commercial nanotube transistors are coming soon MIT Techgev (available at: www.technologyreview.com/2014/07/01/172177/ibmcommercial-nanotube-transistors-are-coming-soon/)(Accessed 1 July2014)

    [32] [32] Franklin A D 2013 The road to carbon nanotube transistors Nature 498 443–4

    [33] [33] Zhang Z Y, Wang S, Wang Z X, Ding L, Pei T, Hu Z D,Liang X L, Chen Q, Li Y and Peng L M 2009 Almost perfectly symmetric SWCNT-based CMOS devices and scaling ACS Nano 3 3781–7

    [34] [34] Cao Q, Tersoff J, Farmer D B, Zhu Y and Han S J 2017 Carbon nanotube transistors scaled to a 40-nanometer footprint Science 356 1369–72

    [35] [35] Franklin A D, Farmer D B and Haensch W 2014 Defining and overcoming the contact resistance challenge in scaled carbon nanotube transistors ACS Nano 8 7333–9

    [36] [36] Guo Y et al 2022 Soft-lock drawing of super-aligned carbon nanotube bundles for nanometre electrical contacts Nat.Nanotechnol. 17 278–84

    [37] [37] Wilder J W G, Venema L C, Rinzler A G, Smalley R E and Dekker C 1998 Electronic structure of atomically resolved carbon nanotubes Nature 391 59–62

    [38] [38] Odom T W, Huang J L, Kim P and Lieber C M 1998 Atomic structure and electronic properties of single-walled carbon nanotubes Nature 391 62–64

    [39] [39] Yang F et al 2014 Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts Nature510 522–4

    [40] [40] Zhang S C et al 2017 Arrays of horizontal carbon nanotubes of controlled chirality grown using designed catalysts Nature 543 234–8

    [41] [41] Yang F et al 2017 Water-assisted preparation of high-purity semiconducting (14, 4) carbon nanotubes ACS Nano11 186–93

    [42] [42] Zhang J W, Cui J L, Cheng Y, Wang W J, He X Q and Mei X S 2019 A molecular dynamics study on self-assembly of single-walled carbon nanotubes: from molecular morphology and binding energy Adv. Mater.Interfaces 6 1900983

    [43] [43] Lin S C and Blankschtein D 2010 Role of the bile salt surfactant sodium cholate in enhancing the aqueous dispersion stability of single-walled carbon nanotubes: a molecular dynamics simulation study J. Phys. Chem. B114 15616–25

    [44] [44] Kim S, Yim J, Wang X H, Bradley D D C, Lee S and Demello J C 2010 Spin-and spray-deposited single-walled carbon-nanotube electrodes for organic solar cells Adv. Funct. Mater. 20 2310–6

    [45] [45] Green A A and Hersam M C 2011 Nearly single-chirality single-walled carbon nanotubes produced via orthogonal iterative density gradient ultracentrifugation Adv. Mater.23 2185–90

    [46] [46] Liu H P, Nishide D, Tanaka T and Kataura H 2011 Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography Nat.Commun. 2 309

    [47] [47] Tulevski G S, Franklin A D and Afzali A 2013 High purity isolation and quantification of semiconducting carbon nanotubes via column chromatography ACS Nano7 2971–6

    [48] [48] Arnold M S, Stupp S I and Hersam M C 2005 Enrichment of single-walled carbon nanotubes by diameter in density gradients Nano Lett. 5 713–8

    [49] [49] Ghosh S, Bachilo S M and Weisman R B 2010 Advanced sorting of single-walled carbon nanotubes by nonlinear density-gradient ultracentrifugation Nat. Nanotechnol.5 443–50

    [50] [50] Nish A, Hwang J Y, Doig J and Nicholas R J 2007 Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers Nat. Nanotechnol.2 640–6

    [51] [51] Mistry K S, Larsen B A and Blackburn J L 2013 High-yield dispersions of large-diameter semiconducting single-walled carbon nanotubes with tunable narrow chirality distributions ACS Nano 7 2231–9

    [52] [52] Gomulya W, Derenskyi V, Kozma E, Pasini M and Loi M A 2015 Polyazines and polyazomethines with didodecylthiophene units for selective dispersion of semiconducting single-walled carbon nanotubes Adv. Funct. Mater. 25 5858–64

    [53] [53] Rice N A and Adronov A 2013 Supramolecular interactions of high molecular weight poly (2, 7-carbazole)s with single-walled carbon nanotubes Macromolecules46 3850–60

    [54] [54] Liu J H, Moo-Young J, McInnis M, Pasquinelli M A and Zhai L 2014 Conjugated polymer assemblies on carbon nanotubes Macromolecules 47 705–12

    [55] [55] Lee H W et al 2011 Selective dispersion of high purity semiconducting single-walled carbon nanotubes with regioregular poly(3-alkylthiophene)s Nat. Commun.2 541

    [56] [56] Gu J T, Han J, Liu D, Yu X Q, Kang L X, Qiu S, Jin H H,Li H B, Li Q W and Zhang J 2016 Solution-processable high-purity semiconducting SWCNTs for large-area fabrication of high-performance thin-film transistors Small12 4993–9

    [57] [57] Li Y H et al 2022 High-purity monochiral carbon nanotubes with a 1.2 nm diameter for high-performance field-effect transistors Adv. Funct. Mater. 32 2107119

    [58] [58] Liu L J et al 2020 Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics Science 368 850–6

    [59] [59] Hwang J Y, Nish A, Doig J, Douven S, Chen C W, Chen L C and Nicholas R J 2008 Polymer structure and solvent effects on the selective dispersion of single-walled carbon nanotubes J. Am. Chem. Soc. 130 3543–53

    [60] [60] Subbaiyan N K, Cambré S, Parra-Vasquez A N G, Hároz E H,Doorn S K and Duque J G 2014 Role of surfactants and salt in aqueous two-phase separation of carbon nanotubes toward simple chirality isolation ACS Nano 8 1619–28

    [61] [61] Wei L, Liu B L, Wang X T, Gui H, Yuan Y, Zhai S L,Ng A K, Zhou C W and Chen Y 2015 (9, 8) single-walled carbon nanotube enrichment via aqueous two-phase separation and their thin-film transistor applications Adv.Electron. Mater. 1 1500151

    [62] [62] Tu X M, Manohar S, Jagota A and Zheng M 2009 DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes Nature460 250–3

    [63] [63] Tu X M, Walker A R H, Khripin C Y and Zheng M 2011 Evolution of DNA sequences toward recognition of metallic armchair carbon nanotubes J. Am. Chem. Soc.133 12998–3001

    [64] [64] Fagan J A, Khripin C Y, Batista C A S, Simpson J R,Hároz E H, Walker A R H and Zheng M 2014 Isolation of specific small-diameter single-wall carbon nanotube species via aqueous two-phase extraction Adv. Mater.26 2800–4

    [65] [65] Fagan J A, Hároz E H, Ihly R, Gui H, Blackburn J L,Simpson J R, Lam S, Walker A R H, Doorn S K and Zheng M 2015 Isolation of >1 nm diameter single-wall carbon nanotube species using aqueous two-phase extraction ACS Nano 9 5377–90

    [66] [66] Ao G Y, Khripin C Y and Zheng M 2014 DNA-controlled partition of carbon nanotubes in polymer aqueous two-phase systems J. Am. Chem. Soc. 136 10383–92

    [67] [67] Lei T, Chen X Y, Pitner G, Wong H S P and Bao Z N 2016 Removable and recyclable conjugated polymers for highly selective and high-yield dispersion and release of low-cost carbon nanotubes J. Am. Chem. Soc. 138 802–5

    [68] [68] Cao Q, Han S J, Tersoff J, Franklin A D, Zhu Y, Zhang Z,Tulevski G S, Tang J S and Haensch W 2015 End-bonded contacts for carbon nanotube transistors with low,size-independent resistance Science 350 68–72

    [69] [69] Jin S H et al 2013 Using nanoscale thermocapillary flows to create arrays of purely semiconducting single-walled carbon nanotubes Nat. Nanotechnol. 8 347–55

    [70] [70] Xie X et al 2014 Microwave purification of large-area horizontally aligned arrays of single-walled carbon nanotubes Nat. Commun. 5 5332

    [71] [71] Cao Q, Han S J, Tulevski G S, Zhu Y, Lu D D and Haensch W 2013 Arrays of single-walled carbon nanotubes with full surface coverage for high-performance electronics Nat. Nanotechnol. 8 180–6

    [72] [72] Kang S J, Kocabas C, Ozel T, Shim M, Pimparkar N,Alam M A, Rotkin S V and Rogers J A 2007 High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes Nat.Nanotechnol. 2 230–6

    [73] [73] Hong S W, Banks T and Rogers J A 2010 Improved density in aligned arrays of single-walled carbon nanotubes by sequential chemical vapor deposition on quartz Adv.Mater. 22 1826–30

    [74] [74] Che Y C, Lin Y C, Kim P and Zhou C W 2013 T-gate aligned nanotube radio frequency transistors and circuits with superior performance ACS Nano 7 4343–50

    [75] [75] Hu Y et al 2015 Growth of high-density horizontally aligned SWNT arrays using Trojan catalysts Nat.Commun. 6 6099

    [76] [76] Si J, Zhong D L, Xu H T, Xiao M M, Yu C X, Zhang Z Y and Peng L M 2018 Scalable preparation of high-density semiconducting carbon nanotube arrays for high-performance field-effect transistors ACS Nano12 627–34

    [77] [77] Li X L, Zhang L, Wang X R, Shimoyama I, Sun X M,Seo W S and Dai H J 2007 Langmuir? Blodgett assembly of densely aligned single-walled carbon nanotubes from bulk materials J. Am. Chem. Soc. 129 4890–1

    [78] [78] Brady G J, Way A J, Safron N S, Evensen H T, Gopalan P and Arnold M S 2016 Quasi-ballistic carbon nanotube array transistors with current density exceeding Si and GaAs Sci. Adv. 2 e1601240

    [79] [79] Jinkins K R, Chan J, Brady G J, Gronski K K, Gopalan P,Evensen H T, Berson A and Arnold M S 2017 Nanotube alignment mechanism in floating evaporative self-assembly Langmuir 33 13407–14

    [80] [80] Zhang J W, Cui J L, Mei H H, Wei F Q, He X Q and Mei X S 2022 A programmable multiscale assembly strategy of carbon nanotubes for honeycomb-like networks Carbon 198 110–8

    [81] [81] Kim K H, Kim J H, Huang X J, Yoo S M, Lee S Y and Choi Y K 2008 Doping-free nanoscale complementary carbon-nanotube field-effect transistors with DNA-templated molecular lithography Small4 1959–63

    [82] [82] Engel M, Small J P, Steiner M, Freitag M, Green A A,Hersam M C and Avouris P 2008 Thin film nanotube transistors based on self-assembled, aligned,semiconducting carbon nanotube arrays ACS Nano2 2445–52

    [83] [83] Shastry T A, Seo J W T, Lopez J J, Arnold H N, Kelter J Z,Sangwan V K, Lauhon L J, Marks T J and Hersam M C2013 Large-area, electronically monodisperse, aligned single-walled carbon nanotube thin films fabricated by evaporation-driven self-assembly Small 9 45–51

    [84] [84] Dinh N T, Sowade E, Blaudeck T, Hermann S, Rodriguez R D, Zahn D R T, Schulz S E, Baumann R R and Kanoun O 2016 High-resolution inkjet printing of conductive carbon nanotube twin lines utilizing evaporation-driven self-assembly Carbon 96 382–93

    [85] [85] Dan B, Ma A W K, Hároz E H, Kono J and Pasquali M 2012 Nematic-like alignment in SWNT thin films from aqueous colloidal suspensions Ind. Eng. Chem. Res. 51 10232–7

    [86] [86] Oh J Y, Yang S J, Park J Y, Kim T, Lee K, Kim Y S, Han H N and Park C R 2015 Easy preparation of self-assembled high-density buckypaper with enhanced mechanical properties Nano Lett. 15 190–7

    [87] [87] He X W et al 2016 Wafer-scale monodomain films of spontaneously aligned single-walled carbon nanotubes Nat. Nanotechnol. 11 633–8

    [88] [88] Jinkins K R, Foradori S M, Saraswat V, Jacobberger R M,Dwyer J H, Gopalan P, Berson A and Arnold M S 2021 Aligned 2D carbon nanotube liquid crystals for wafer-scale electronics Sci. Adv. 7 eabh0640

    [89] [89] Joo Y, Brady G J, Arnold M S and Gopalan P 2014 Dose-controlled, floating evaporative self-assembly and alignment of semiconducting carbon nanotubes from organic solvents Langmuir 30 3460–6

    [90] [90] Park H, Afzali A, Han S J, Tulevski G S, Franklin A D,Tersoff J, Hannon J B and Haensch W 2012 High-density integration of carbon nanotubes via chemical self-assembly Nat. Nanotechnol. 7 787–91

    [91] [91] Liu J, Casavant M J, Cox M, Walters D A, Boul P, Lu W,Rimberg A J, Smith K A, Colbert D T and Smalley R E1999 Controlled deposition of individual single-walled carbon nanotubes on chemically functionalized templates Chem. Phys. Lett. 303 125–9

    [92] [92] Bardecker J A, Afzali A, Tulevski G S, Graham T,Hannon J B and Jen A K Y 2008 Directed assembly of single-walled carbon nanotubes via drop-casting onto a UV-patterned photosensitive monolayer J. Am. Chem. Soc.130 7226–7

    [93] [93] Bardecker J A, Afzali A, Tulevski G S, Graham T,Hannon J B and Jen A K Y 2012 UV-sensitive self-assembled monolayer photoresist for the selective deposition of carbon nanotubes Chem. Mater. 24 2017–21

    [94] [94] Sun W et al 2020 Precise pitch-scaling of carbon nanotube arrays within three-dimensional DNA nanotrenches Science 368 874–7

    [95] [95] Garcia R, Knoll A W and Riedo E 2014 Advanced scanning probe lithography Nat. Nanotechnol. 9 577–87

    [96] [96] Zheng X R et al 2019 Patterning metal contacts on monolayer MoS2 with vanishing Schottky barriers using thermal nanolithography Nat. Electron. 2 17–25

    [97] [97] Shulaker M M, Van Rethy J, Wu T F, Liyanage L S, Wei H,Li Z Y, Pop E, Gielen G, Wong H S P and Mitra S 2014 Carbon nanotube circuit integration up to sub-20 nm channel lengths ACS Nano 8 3434–43

    [98] [98] Shulaker M, Van Rethy J, Hills G, Wei H, Chen H Y,Gielen G, Wong H S P and Mitra S 2014 Sensor-to-digital interface built entirely with carbon nanotube FETs IEEE J.Solid-State Circuits 49 190–201

    [99] [99] Shi H W et al 2021 Radiofrequency transistors based on aligned carbon nanotube arrays Nat. Electron. 4 405–15

    [100] [100] Shulaker M M, Hills G, Patil N, Wei H, Chen H Y,Wong H S P and Mitra S 2013 Carbon nanotube computer Nature 501 526–30

    [101] [101] Hills G et al 2019 Modern microprocessor built from complementary carbon nanotube transistors Nature572 595–602

    [102] [102] Nepal I K, Bhutia C T, Thapa A, Chettri B, Das S K and Sharma B 2021 Analysis of electrical properties of unpolarized/polarized CNT-BNNT-CNT for varying lengths of BNNT 2021 Devices for Integrated Circuit(DevIC) (IEEE) pp 652–4

    [103] [103] Franklin A D and Chen Z H 2010 Length scaling of carbon nanotube transistors Nat. Nanotechnol. 5 858–62

    Tools

    Get Citation

    Copy Citation Text

    Jianlei Cui, Fengqi Wei, Xuesong Mei. Carbon nanotube integrated circuit technology: purification, assembly and integration[J]. International Journal of Extreme Manufacturing, 2024, 6(3): 32004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: May. 8, 2023

    Accepted: --

    Published Online: Sep. 11, 2024

    The Author Email: Mei Xuesong (xsmei@mail.xjtu.edu.cn)

    DOI:10.1088/2631-7990/ad2e12

    Topics