Journal of the Chinese Ceramic Society, Volume. 51, Issue 9, 2322(2023)

Fluorinated Inorganic Materials for Lithium Metal Anodes-A Short Review

LI Shaowei*... YUAN Huadong, LUO Jianmin, WANG Yao, LIU Yujing, NAI Jianwei and TAO Xinyong |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(84)

    [1] [1] CHOI J W, AURBACH D. Promise and reality of post-lithium-ion batteries with high energy densities[J]. Nat Rev Mater, 2016, 1(4): 1-16.

    [2] [2] WU J W, ZHENG M T, LIU T F, et al. Direct recovery: a sustainable recycling technology for spent lithium-ion battery[J]. Energy Storage Mater, 2023, 54: 120-134.

    [3] [3] JU Z J, JIN C B, YUAN H D, et al. A fast-ion conducting interface enabled by aluminum silicate fibers for stable Li metal batteries[J]. Chem Eng J, 2021, 408: 128016.

    [4] [4] ZHANG Y S, ZHANG X L, SILVA S R P, et al. Lithium-sulfur batteries meet electrospinning: recent advances and the key parameters for high gravimetric and volume energy density[J]. Adv Sci, 2022, 9(4): 2103879.

    [5] [5] JIN C B, SHENG O W, ZHANG W K, et al. Sustainable, inexpensive, naturally multi-functionalized biomass carbon for both Li metal anode and sulfur cathode[J]. Energy Storage Mater, 2018, 15: 218-225.

    [6] [6] WANG X X, GUAN D H, LI F, et al. Magnetic and optical field multi-assisted Li-O2 batteries with ultrahigh energy efficiency and cycle stability[J]. Adv Mater, 2022, 34(2): e2104792.

    [7] [7] XU W, WANG J L, DING F, et al. Lithium metal anodes for rechargeable batteries[J]. Energy Environ Sci, 2014, 7(2): 513-537.

    [8] [8] FANG Y J, ZHANG S L, WU Z P, et al. A highly stable lithium metal anode enabled by Ag nanoparticle-embedded nitrogen-doped carbon macroporous fibers[J]. Sci Adv, 2021, 7(21): eabg3626.

    [9] [9] ZHANG X Y, WANG A X, LIU X J, et al. Dendrites in lithium metal anodes: suppression, regulation, and elimination[J]. Acc Chem Res, 2019, 52(11): 3223-3232.

    [10] [10] LIU H, CHENG X B, XU R, et al. Plating/stripping behavior of actual lithium metal anode[J]. Adv Energy Mater, 2019, 9(44): 1902254.

    [11] [11] JIN C B, LIU T F, SHENG O W, et al. Rejuvenating dead lithium supply in lithium metal anodes by iodine redox[J]. Nat Energy, 2021, 6(4): 378-387.

    [12] [12] ZHANG R, LI N W, CHENG X B, et al. Advanced micro/nanostructures for lithium metal anodes[J]. Adv Sci, 2017, 4(3): 1600445.

    [13] [13] ZHANG B L, SHI H D, JU Z J, et al. Arrayed silk fibroin for high-performance Li metal batteries and atomic interface structure revealed by cryo-TEM[J]. J Mater Chem A, 2020, 8(48): 26045-26054.

    [14] [14] LIU W, LIU P C, MITLIN D. Review of emerging concepts in SEI analysis and artificial SEI membranes for lithium, sodium, and potassium metal battery anodes[J]. Adv Energy Mater, 2020, 10(43): 2002297.

    [15] [15] LI S, LUO Z, LI L, et al. Recent progress on electrolyte additives for stable lithium metal anode[J]. Energy Storage Mater, 2020, 32: 306-319.

    [16] [16] YANG C P, FU K, ZHANG Y, et al. Protected lithium-metal anodes in batteries: from liquid to solid[J]. Adv Mater, 2017, 29(36): 1701169.

    [17] [17] YANG F, LIU Y J, LIU T F, et al. Fluorinated strategies among all‐solid‐state lithium metal batteries from microperspective[J]. Small Struct, 2023, 4(1): 2200122.

    [18] [18] SHENG O W, JIN C B, JU Z J, et al. Stabilizing Li4SnS4 electrolyte from interface to bulk phase with a gradient lithium iodide/polymer layer in lithium metal batteries[J]. Nano Lett, 2022, 22(20): 8346-8354.

    [19] [19] TAN Y H, LU G X, ZHENG J H, et al. Lithium fluoride in electrolyte for stable and safe lithium-metal batteries[J]. Adv Mater, 2021, 33(42): 2102134.

    [20] [20] LU Y Y, TU Z Y, ARCHER L A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes[J]. Nat Mater, 2014, 13(10): 961-969.

    [21] [21] HONG S M, ETACHERI V, HONG C N, et al. Enhanced lithium- and sodium-ion storage in an interconnected carbon network comprising electronegative fluorine[J]. ACS Appl Mater Interfaces, 2017, 9(22): 18790-18798.

    [22] [22] SHEN X W, LI Y T, QIAN T, et al. Lithium anode stable in air for low-cost fabrication of a dendrite-free lithium battery[J]. Nat Commun, 2019, 10(1): 900.

    [23] [23] YUAN H D, NAI J W, TIAN H, et al. An ultrastable lithium metal anode enabled by designed metal fluoride spansules[J]. Sci Adv, 2020, 6(10): eaaz3112.

    [24] [24] SHI J Y, SUN G, LI L P, et al. Fluorine substitution at the O-site imparts enhanced chemical stability for garnet-structured electrolytes[J]. ACS Energy Lett, 2023, 8(1): 48-55.

    [25] [25] ZHANG W D, ZHUANG H L, FAN L, et al. A “cation-anion regulation” synergistic anode host for dendrite-free lithium metal batteries[J]. Sci Adv, 2018, 4(2): eaar4410.

    [26] [26] CHENG X B, ZHANG R, ZHAO C Z, et al. Toward safe lithium metal anode in rechargeable batteries: a review[J]. Chem Rev, 2017, 117(15): 10403-10473.

    [27] [27] XIAO J, XIAO N, LI K, et al. Ultra‐high fluorine enhanced homogeneous nucleation of lithium metal on stepped carbon nanosheets with abundant edge sites[J]. Adv Energy Mater, 2022, 12(10): 2103123.

    [29] [29] GAN H, WANG R L, WU J, et al. Coupling a 3D lithophilic skeleton with a fluorine-enriched interface to enable stable lithium metal anode[J]. ACS Appl Mater Interfaces, 2021, 13(31): 37162-37171.

    [30] [30] WANG X S, PAN Z H, WU Y, et al. Infiltrating lithium into carbon cloth decorated with zinc oxide arrays for dendrite-free lithium metal anode[J]. Nano Res, 2019, 12(3): 525-529.

    [31] [31] ZHANG Y, LIU B Y, HITZ E, et al. A carbon-based 3D current collector with surface protection for Li metal anode[J]. Nano Res, 2017, 10(4): 1356-1365.

    [32] [32] LIN D C, LIU Y Y, LIANG Z, et al. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes[J]. Nat Nanotechnol, 2016, 11(7): 626-632.

    [33] [33] CHEN M, ZHENG J H, SHENG O W, et al. Sulfur-nitrogen co-doped porous carbon nanosheets to control lithium growth for a stable lithium metal anode[J]. J Mater Chem A, 2019, 7(31): 18267-18274.

    [35] [35] JIN C B, SHENG O W, LUO J M, et al. 3D lithium metal embedded within lithiophilic porous matrix for stable lithium metal batteries[J]. Nano Energy, 2017, 37: 177-186.

    [36] [36] LI T, LIU H, SHI P, et al. Recent progress in carbon/lithium metal composite anode for safe lithium metal batteries[J]. Rare Met, 2018, 37(6): 449-458.

    [37] [37] FENG Y Y, ZHANG C F, LI B, et al. Low-volume-change, dendrite-free lithium metal anodes enabled by lithophilic 3D matrix with LiF-enriched surface[J]. J Mater Chem A, 2019, 7(11): 6090-6098.

    [38] [38] LI X T, ZHANG H C, LIU C, et al. A MOF-derived multifunctional nano-porous fluorinated carbon for high performance lithium/fluorinated carbon primary batteries[J]. Microporous Mesoporous Mater, 2021, 310: 110650.

    [39] [39] WANG Y Y, WANG Z J, LEI D N, et al. Spherical Li deposited inside 3D Cu skeleton as anode with ultrastable performance[J]. ACS Appl Mater Interfaces, 2018, 10(24): 20244-20249.

    [40] [40] HUANG G X, LOU P, XU G H, et al. Co3O4 nanosheet decorated nickel foams as advanced lithium host skeletons for dendrite-free lithium metal anode[J]. J Alloys Compd, 2020, 817: 152753.

    [41] [41] LI H, RICHTER G, MAIER J. Reversible formation and decomposition of LiF clusters using transition metal fluorides as precursors and their application in rechargeable Li batteries[J]. Adv Mater, 2003, 15(9): 736-739.

    [42] [42] YANG C P, YIN Y X, ZHANG S F, et al. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes[J]. Nat Commun, 2015, 6: 8058.

    [43] [43] LIU Z Y, HE B Y, ZHANG Z B, et al. Lithium/graphene composite anode with 3D structural LiF protection layer for high-performance lithium metal batteries[J]. ACS Appl Mater Interfaces, 2022, 14(2): 2871-2880.

    [44] [44] ZHAO F, ZHOU X F, DENG W, et al. Entrapping lithium deposition in lithiophilic reservoir constructed by vertically aligned ZnO nanosheets for dendrite-free Li metal anodes[J]. Nano Energy, 2019, 62: 55-63.

    [45] [45] CHANG X S, LIU H, YANG H, et al. Co-guiding the dendrite-free plating of lithium on lithiophilic ZnO and fluoride modified 3D porous copper for stable Li metal anode[J]. J Materiomics, 2019, 6(1): 54-61.

    [46] [46] ZHANG J M, SUN D, TANG Z, et al. Scalable slurry-coating induced integrated 3D lithiophilic architecture for stable lithium metal anodes[J]. J Power Sources, 2021, 485: 229334.

    [47] [47] HUANG G X, CHEN S R, GUO P M, et al. In situ constructing lithiophilic NiFx nanosheets on Ni foam current collector for stable lithium metal anode via a succinct fluorination strategy[J]. Chem Eng J, 2020, 395: 125122.

    [48] [48] ANASORI B, LUKATSKAYA M R, GOGOTSI Y. 2D metal carbides and nitrides (MXenes) for energy storage[J]. Nat Rev Mater, 2017, 2(2): 1-17.

    [49] [49] LUO J M, ZHANG W K, YUAN H D, et al. Pillared structure design of MXene with ultralarge interlayer spacing for high-performance lithium-ion capacitors[J]. ACS Nano, 2017, 11(3): 2459-2469.

    [50] [50] THAPALIYA B P, JAFTA C J, LYU H L, et al. Fluorination of MXene by elemental F2 as electrode material for lithium-ion batteries[J]. ChemSusChem, 2019, 12(7): 1316-1324.

    [51] [51] ZHAO Y, LI Q, LIU Z, et al. Stable electrochemical Li plating/stripping behavior by anchoring MXene layers on three-dimensional conductive skeletons[J]. ACS Appl Mater Interfaces, 2020, 12(34): 37967-37976.

    [52] [52] NAGUIB M, UNOCIC R R, ARMSTRONG B L, et al. Large-scale delamination of multi-layers transition metal carbides and carbonitrides “MXenes”[J]. Dalton Trans, 2015, 44(20): 9353-9358.

    [53] [53] RUI K, WEN Z Y, LU Y, et al. One-step solvothermal synthesis of nanostructured Manganese fluoride as an anode for rechargeable lithium-ion batteries and insights into the conversion mechanism[J]. Adv Energy Mater, 2015, 5(7): 1401716.

    [54] [54] BIEKER G, WINTER M, BIEKER P. Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode[J]. Phys Chem Chem Phys, 2015, 17(14): 8670-8679.

    [55] [55] LIN D C, LIU Y Y, CUI Y. Reviving the lithium metal anode for high-energy batteries[J]. Nat Nanotechnol, 2017, 12(3): 194-206.

    [56] [56] MICHAN A L, PARIMALAM B S, LESKES M, et al. Fluoroethylene carbonate and vinylene carbonate reduction: understanding lithium-ion battery electrolyte additives and solid electrolyte interphase formation[J]. Chem Mater, 2016, 28(22): 8149-8159.

    [57] [57] JU Z J, LU G X, SHENG O W, et al. Soybean protein fiber enabled controllable Li deposition and a LiF-nanocrystal-enriched interface for stable Li metal batteries[J]. Nano Lett, 2022, 22(3): 1374-1381.

    [58] [58] JIANG Y P, WANG B, LIU P, et al. Modified solid-electrolyte interphase toward stable Li metal anode[J]. Nano Energy, 2020, 77: 105308.

    [59] [59] JIANG C, MA C, YANG F, et al. Materials chemistry among the artificial solid electrolyte interphases of metallic lithium anodes[J]. Mater Chem Front, 2021, 5(14): 5194-5210.

    [60] [60] SHADIKE Z, LEE H, BORODIN O, et al. Identification of LiH and nanocrystalline LiF in the solid-electrolyte interphase of lithium metal anodes[J]. Nat Nanotechnol, 2021, 16(5): 549-554.

    [61] [61] CUI C Y, YANG C Y, EIDSON N, et al. A highly reversible, dendrite-free lithium metal anode enabled by a lithium-fluoride- enriched interphase[J]. Adv Mater, 2020, 32(12): 1906427.

    [62] [62] CHEN M, ZHENG J H, LIU Y J, et al. Marrying ester group with lithium salt: cellulose-acetate-enabled LiF-enriched interface for stable lithium metal anodes[J]. Adv Funct Mater, 2021, 31(36): 2102228.

    [63] [63] ZHENG J H, WANG Y, WANG J C, et al. Toward understanding the effect of fluoride ions on the solvation structure in lithium metal batteries: insights from first-principles simulations[J]. ACS Appl Mater Interfaces, 2022, 14(43): 48762-48769.

    [64] [64] LANG J L, LONG Y Z, QU J L, et al. One-pot solution coating of high quality LiF layer to stabilize Li metal anode[J]. Energy Storage Mater, 2019, 16: 85-90.

    [65] [65] WANG Z X, SUN C G, SHI Y, et al. A salt-derived solid electrolyte interphase by electroreduction of water-in-salt electrolyte for uniform lithium deposition[J]. J Power Sources, 2019, 439: 227073.

    [66] [66] LIN D C, LIU Y Y, CHEN W, et al. Conformal lithium fluoride protection layer on three-dimensional lithium by nonhazardous gaseous reagent Freon[J]. Nano Lett, 2017, 17(6): 3731-3737.

    [67] [67] CHENG H, MAO Y J, LU Y H, et al. Trace fluorinated-carbon- nanotube-induced lithium dendrite elimination for high-performance lithium-oxygen cells[J]. Nanoscale, 2020, 12(5): 3424-3434.

    [68] [68] LI F, TAN Y H, YIN Y C, et al. A fluorinated alloy-type interfacial layer enabled by metal fluoride nanoparticle modification for stabilizing Li metal anodes[J]. Chem Sci, 2019, 10(42): 9735-9739.

    [69] [69] GUO S G, PIAO N, WANG L, et al. PVDF-HFP/LiF composite interfacial film to enhance the stability of Li-metal anodes[J]. ACS Appl Energy Mater, 2020, 3(7): 7191-7199.

    [70] [70] ZHAO J, LIAO L, SHI F F, et al. Surface fluorination of reactive battery anode materials for enhanced stability[J]. J Am Chem Soc, 2017, 139(33): 11550-11558.

    [71] [71] CHENG Y F, YANG X M, LI M H, et al. Enabling ultrastable alkali metal anodes by artificial solid electrolyte interphase fluorination[J]. Nano Lett, 2022, 22(11): 4347-4353.

    [72] [72] ZHANG Q, WEI X, LIU Y S, et al. Dendrite-free lithium anode achieved under lean-electrolyte condition through the modification of separators with F-functionalized Ti3C2 nanosheets[J]. J Energy Chem, 2022, 66: 366-373.

    [73] [73] LI X, LIU Y, PAN Y, et al. A functional SrF2 coated separator enabling a robust and dendrite-free solid electrolyte interphase on a lithium metal anode[J]. J Mater Chem A, 2019, 7(37): 21349-21361.

    [74] [74] XIA S X, ZHANG X, YANG G Z, et al. Bifunctional fluorinated separator enabling polysulfide trapping and Li deposition for lithium-sulfur batteries[J]. ACS Appl Mater Interfaces, 2021, 13(10): 11920-11929.

    [75] [75] HE J R, CHEN Y F, MANTHIRAM A. Vertical Co9S8 hollow nanowall arrays grown on a Celgard separator as a multifunctional polysulfide barrier for high-performance Li-S batteries[J]. Energy Environ Sci, 2018, 11(9): 2560-2568.

    [76] [76] WANG L L, FU S Y, ZHAO T, et al. In situ formation of a LiF and Li-Al alloy anode protected layer on a Li metal anode with enhanced cycle life[J]. J Mater Chem A, 2020, 8(3): 1247-1253.

    [77] [77] LI L S, XU G J, ZHANG S H, et al. Highly fluorinated Al-centered lithium salt boosting the interfacial compatibility of Li-metal batteries[J]. ACS Energy Lett, 2022, 7(2): 591-598.

    [78] [78] QIAN J F, HENDERSON W A, XU W, et al. High rate and stable cycling of lithium metal anode[J]. Nat Commun, 2015, 6: 6362.

    [79] [79] SUO L M, XUE W J, GOBET M, et al. Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries[J]. Proc Natl Acad Sci USA, 2018, 115(6): 1156-1161.

    [80] [80] XIAO Y L, HAN B, ZENG Y, et al. New lithium salt forms interphases suppressing both Li dendrite and polysulfide shuttling[J]. Adv Energy Mater, 2020, 10(14): 1903937.

    [81] [81] ZENG X X, YIN Y X, LI N W, et al. Reshaping lithium plating/stripping behavior via bifunctional polymer electrolyte for room-temperature solid Li metal batteries[J]. J Am Chem Soc, 2016, 138(49): 15825-15828.

    [82] [82] DIRICAN M, YAN C Y, ZHU P, et al. Composite solid electrolytes for all-solid-state lithium batteries[J]. Mater Sci Eng R Rep, 2019, 136: 27-46.

    [83] [83] SHENG O W, HU H L, LIU T F, et al. Interfacial and ionic modulation of poly (ethylene oxide) electrolyte via localized iodization to enable dendrite-free lithium metal batteries[J]. Adv Funct Mater, 2022, 32(14): 2111026.

    [84] [84] ARNOLD W, SHREYAS V, LI Y, et al. Synthesis of fluorine-doped lithium argyrodite solid electrolytes for solid-state lithium metal batteries[J]. ACS Appl Mater Interfaces, 2022, 14(9): 11483-11492.

    [85] [85] ZHAO F P, SUN Q, YU C, et al. Ultrastable anode interface achieved by fluorinating electrolytes for all-solid-state Li metal batteries[J]. ACS Energy Lett, 2020, 5(4): 1035-1043.

    [86] [86] YU T W, LIANG J W, LUO L, et al. Superionic fluorinated halide solid electrolytes for highly stable Li-metal in all-solid-state Li batteries[J]. Adv Energy Mater, 2021, 11(36): 2101915.

    Tools

    Get Citation

    Copy Citation Text

    LI Shaowei, YUAN Huadong, LUO Jianmin, WANG Yao, LIU Yujing, NAI Jianwei, TAO Xinyong. Fluorinated Inorganic Materials for Lithium Metal Anodes-A Short Review[J]. Journal of the Chinese Ceramic Society, 2023, 51(9): 2322

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Feb. 28, 2023

    Accepted: --

    Published Online: Oct. 7, 2023

    The Author Email: Shaowei LI (1013740205@qq.com)

    DOI:

    CSTR:32186.14.

    Topics