Matter and Radiation at Extremes, Volume. 6, Issue 2, 026903(2021)
Dynamics of particles near the surface of a medium under ultra-strong shocks
[1] P. M. Celliers, M. Millot, P. A. Sterne et al. Measuring the shock impedance mismatch between high-density carbon and deuterium at the National Ignition Facility. Phys. Rev. B, 97, 144108(2018).
[2] Q. F. Chen, Y. J. Gu, J. Zheng et al. Shock-adiabatic to quasi-isentropic compression of warm dense helium up to 150 Gpa. Phys. Rev. B, 95, 224104(2017).
[3] T. Doppner, A. L. Kritcher, D. C. Swift et al. Absolute equation-of-state measurement for polystyrene from 25 to 60 Mbar using a spherically converging shock wave. Phys. Rev. Lett., 121, 025001(2018).
[4] M. C. Gregor, C. A. McCoy, D. N. Polsin et al. Shock-wave equation-of-state measurements in fused silica up to 1600 Gpa. J. Appl. Phys., 119, 215901(2016).
[5] Q. F. Chen, Y. J. Gu, Z. G. Li et al. Multishock compression of dense cryogenic hydrogen-helium mixtures up to 60 Gpa: Validating the equation of state calculated from first principles. Phys. Rev. B, 98, 064101(2018).
[6] D. Batani, H. Stabile et al. Hugoniot data for carbon at megabar pressures. Phys. Rev. Lett., 92, 065503(2004).
[7] A. Balducci, D. Batani et al. Equation of state data for gold in the pressure range <10 TPa. Phys. Rev. B, 61, 9287(2000).
[8] D. Batani, A. Morelli et al. Equation of state data for iron at pressure beyond 10 mbar. Phys. Rev. Lett., 88, 235502(2002).
[9] N. Ozaki, K. A. Tanaka et al. Gekko/hiper-driven shock waves and equation-of-state measurements at ultrahigh pressures. Phys. Plasmas, 11, 1600(2004).
[10] T. Ono, N. Ozaki et al. Equation-of-state measurements for polystyrene at multi-tpa pressures in laser direct-drive experiments. Phys. Plasmas, 12, 124503(2005).
[11] K. Jakubowska et al. Theoretical and experimental refraction index of shock compressed and pre-compressed water in the megabar pressure range. Eur. Phys. Lett., 126, 56001(2019).
[12] M. Koenig et al. Relative consistency of equation of state by laser driven shock waves. Phys. Rev. Lett., 74, 2260(1995).
[13] T. Doppner, A. L. Kritcher, D. C. Swift et al. A measurement of the equation of state of carbon envelopes of white dwarfs. Nature, 584, 51(2020).
[14] J. Lindl. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas, 2, 3933(1995).
[15] Z. Fan, B. Liu, Y. Liu et al. Non-equilibrium between ions and electrons inside hot spots from National Ignition Facility experiments. Matter Radiat. Extremes, 2, 3(2017).
[16] E. M. Campbell, V. N. Goncharov, T. C. Sangster et al. Laser-direct drive program: Promise, challenge and path forward. Matter Radiat. Extremes, 2, 37(2017).
[17] A. L. Kritcher, M. E. Martin, J. Nilsen et al. Understanding the effects of radiative preheat and self-emission from shock heating on equation of state measurement at 100s of Mbar using spherically converging shock waves in a NIF hohlraum. Matter Radiat. Extremes, 5, 018410(2020).
[18] P. Arnault, J. A. Gaffney, S. X. Hu et al. A review of equation-of-state models for inertial confinement fusion materials. High Energy Density Phys., 28, 7(2018).
[19] Z. F. Fan, X. T. He, J. W. Li et al. A hybrid-drive nonisobaric-ignition scheme for inertial confinement fusion. Phys. Plasmas, 23, 082706(2016).
[20] Y. P. Raizer, Y. B. Zel’dovich. Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena(1967).
[21] R. H. Christian, J. M. Walsh. Equation of state of metals from shock wave measurements. Phys. Rev., 97, 1544-1556(1955).
[22] R. G. Mcqueen, M. H. Rice, J. M. Walsh et al. Shock-wave compressions of twenty-seven metals. Equations of state of metals. Phys. Rev., 108, 196-216(1957).
[23] A. Benuzzi-Mounaix, G. Huser, M. Koenig et al. Absolute equation of state measurements of iron using laser driven shocks. Phys. Plasmas, 9, 2466(2002).
[24] L. V. Al’tshuler, K. K. Krupnikov, B. N. Ledenev et al. Dynamic compressibility and equation of state of iron under high pressure. Sov. Phys. JETP., 7, 606(1958).
[25] L. V. Al’tshuler, A. A. Bakanova, S. B. Kormer et al. Equation of state for aluminum, copper, and lead in the high pressure region. Sov. Phys. JETP., 11, 573(1960).
[26] L. M. Baker, R. E. Hollenbach. Laser interferometer for measuring high velocities of any reflecting surface. J. Appl. Phys., 43, 4669-4675(1972).
[27] D. R. Goosman. Analysis of the laser velocity interferometer. J. Appl. Phys., 46, 3516-3524(1975).
[28] P. M. Celliers, G. W. Collins, L. B. D. Silva et al. Accurate measurement of laser-driven shock trajectories with velocity interferometry. Appl. Phys. Lett., 73, 1320-1322(1998).
[29] D. K. Bradley, P. M. Celliers, G. W. Collins et al. Line-imaging velocimeter for shock diagnostics at the OMEGA laser facility. Rev. Sci. Instrum., 75, 4916-4929(2004).
[30] W. F. Hemsing. Velocity sensing interferometer (VISAR) modification. Rev. Sci. Instrum., 50, 73-78(1979).
[31] P. M. Celliers, G. W. Collins, L. B. D. Silva et al. Shock-induced transformation of liquid deuterium into a metallic fluid. Phys. Rev. Lett., 84, 5564-5567(2000).
[32] P. M. Celliers, G. Collins, D. G. Hicks et al. Shock-induced transformation of Al2O3 and LiF into semiconducting liquids. Phys. Rev. Lett., 91, 035502(2003).
[33] P. M. Celliers, D. G. Hicks, P. Loubeyre et al. Coupling static and dynamic compressions: First measurements in dense hydrogen. High Pressure Res., 24, 25-31(2004).
[34] T. R. Boehly, V. N. Goncharov, W. Seka et al. Velocity and timing of multiple spherically converging shock waves in liquid deuterium. Phys. Rev. Lett., 106, 195001(2011).
[35] A. Lazicki, B. Militzer, S. Zhang et al. Equation of state of boron nitride combining computation, modeling, and experiment. Phys. Rev. B, 99, 165103(2019).
[36] D. H. Dolan. What does ‘velocity’ interferometry really measure. AIP Conf. Proc., 1159, 589(2009).
[37] B. L. Holian, M. Mareschal, C. W. Patterson, E. Salomons. Modeling shock wave in an ideal gas: Going beyond the Navier-Stokes level. Phys. Rev. E., 47, R24-R27(1993).
[38] W. Kang, H. Liu, Q. Zhang et al. Molecular dynamics simulations of microscopic structure of ultra strong shock waves in dense helium. Front. Phys., 11, 115206(2016).
[39] P. Crozier, S. Plimpton, A. Thompson. Lammps-Large-Scale Atomic/Molecular Massively Parallel Simulator(2007).
[40] L. Verlet. Computer ‘experiments’ on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev., 159, 98-103(1967).
[41] R. A. Aziz, J. S. Carley, V. P. S. Nain et al. An accurate intermolecular potential for helium. J. Chem. Phys., 70, 4330(1979).
[42] A. Benuzzi, B. Faral, M. Koenig et al. Preheating study by reflectivity measurements in laser-driven shocks. Phys. Plasmas, 5, 2410(1998).
[43] P. Gibbon. Short Pulse Laser Interactions with Matter(2005).
[44] W. Kang, H. Liu, Y. Zhang et al. Molecular dynamics simulation of strong shock waves propagating in dense deuterium, taking into consideration effects of excited electrons. Phys. Rev. E., 95, 023201(2017).
[45] G. A. Baker. Essentials of Padé Approximants(1975).
Get Citation
Copy Citation Text
Zixiang Yan, Hao Liu, Xinyu Zhang, Guoli Ren, Jie Liu, Wei Kang, Weiyan Zhang, Xiantu He. Dynamics of particles near the surface of a medium under ultra-strong shocks[J]. Matter and Radiation at Extremes, 2021, 6(2): 026903
Category: Radiation and Hydrodynamics
Received: Sep. 27, 2020
Accepted: Feb. 8, 2021
Published Online: Apr. 22, 2021
The Author Email: Kang Wei (weikang@pku.edu.cn)