Acta Photonica Sinica, Volume. 52, Issue 4, 0410003(2023)

Visible-to-infrared Image Translation Based on an Improved Conditional Generative Adversarial Nets

Decao MA1... Yong XIAN1,*, Juan SU2, Shaopeng LI1 and Bing LI1 |Show fewer author(s)
Author Affiliations
  • 1College of War Support, Rocket Force University of Engineering, Xi'an 710025, China
  • 2College of Nuclear Engineering, Rocket Force University of Engineering, Xi'an 710025, China
  • show less
    Figures & Tables(14)
    Algorithm structure
    Generative Networks
    Adversarial networks
    Change of evaluation metrics with the weight coefficient λ
    The subjective comparison results of ablation experiment
    The subjective experiment results comparison of different algorithms
    Performance of six matching algorithms in heterogeneous matching
    Performance of six matching algorithms in infrared image matching
    • Table 1. Generative networks structure parameter

      View table
      View in Article

      Table 1. Generative networks structure parameter

      Layers nameOutput sizeNetworks layers
      Down164×644×4Conv2d,96,Stride=4
      Stages164×647×7,967×7,96×3
      Down232×322×2Conv2d,192,Stride=2
      Stages232×327×7,1927×7,192×3
      Down316×162×2Conv2d,384,Stride=2
      Stages316×167×7,3847×7,384×9
      Down48×82×2Conv2d,768,Stride=2
      Stages48×87×7,7687×7,768×3
      Dconv116×161×1,768,Conv2d3×3,384,ConvTranspose2d1×1,384,Conv2d
      Dconv232×321×1,768,Conv2d3×3,192,ConvTranspose2d1×1,192,Conv2d
      Dconv364×641×1,384,Conv2d3×3,96,ConvTranspose2d1×1,96,Conv2d
      Dconv4128×1281×1,192,Conv2d3×3,48,ConvTranspose2d1×1,48,Conv2d
      Final Dconv256×2564×4,24,ConvTranspose2d3×3,12,Conv2d3×3,3,Conv2d
    • Table 2. Adversarial networks structure parameter

      View table
      View in Article

      Table 2. Adversarial networks structure parameter

      Layers nameOutput sizeNetworks layers
      Down256×256,128×128,64×642×2AvgPool,Stride=2
      Conv1128×128,64×64,32×324×4Conv2d,64,Stride=2
      Conv264×64,32×32,16×164×4Conv2d,128,Stride=2
      Conv332×32,16×16,8×84×4Conv2d,256,Stride=2
      Conv432×32,16×16,8×81×1Conv2d,512,Stride=1
      Conv532×32,16×16,8×81×1Conv2d,1 024,Stride=1
    • Table 3. The objective comparison results of ablation experiment

      View table
      View in Article

      Table 3. The objective comparison results of ablation experiment

      Evaluation indexesSSIM↑MS-SSIM↑PSNR↑LPIPS↓FID↓NCC↑
      Pix2Pix0.910 30.799 426.979 90.085 651.231 10.931 1
      Baseline+SPatchGAN0.918 90.834 627.247 80.077 048.790 90.937 0
      Baseline+Upsampling10.920 20.853 430.086 30.057 943.034 60.941 4
      Baseline+Upsampling20.928 00.855 029.937 50.055 342.220 20.942 9
      Baseline+Upsampling30.943 90.859 530.580 40.050 738.969 90.948 9
      Baseline+Upsampling40.945 40.856 630.620 70.050 338.895 50.948 7
    • Table 4. The objective experiment results comparison of different algorithms

      View table
      View in Article

      Table 4. The objective experiment results comparison of different algorithms

      VEDAISSIM↑MS-SSIM↑PSNR↑LPIPS↓FID↓NCC↑
      Pix2Pix0.910 30.799 426.979 90.085 651.231 10.931 1
      ThermalGAN0.946 60.853 930.048 90.052 539.967 80.947 3
      I-GANs0.814 60.744 227.287 70.158 1119.674 30.893 5
      InfraGAN0.948 70.858 529.987 70.051 139.796 10.948 0
      Ours0.955 10.881 631.329 40.042 333.954 00.960 4
      Ours(512×512)0.950 80.854 731.223 70.059 737.853 00.960 1
      Ours(1024×1024)0.955 50.848 131.864 90.085 653.615 70.951 0
      OSUSSIM↑MS-SSIM↑PSNR↑LPIPS↓FID↓NCC↑
      Pix2Pix0.901 50.885 424.187 60.118 884.363 20.975 6
      ThermalGAN0.904 30.906 129.239 80.132 278.079 80.974 5
      I-GANs0.881 20.867 727.767 00.160 3107.761 40.964 3
      InfraGAN0.905 10.904 629.025 50.137 489.047 50.973 1
      Ours0.923 40.936 831.331 20.064 557.973 50.983 9
      KAISTSSIM↑MS-SSIM↑PSNR↑LPIPS↓FID↓NCC↑
      Pix2Pix0.827 70.593 122.732 80.201 777.878 90.922 6
      ThermalGAN0.854 10.613 823.550 40.283 1112.654 80.937 1
      I-GANs0.844 10.572 022.950 30.361 8156.585 20.927 9
      InfraGAN0.844 50.608 223.021 40.181 063.930 80.929 5
      Ours0.869 20.700 824.452 40.112 327.533 10.948 3
    • Table 5. Network structure of different algorithms

      View table
      View in Article

      Table 5. Network structure of different algorithms

      MethodGeneratorDiscriminatorLoss
      L1 lossSSIM loss
      Pix2PixResNet9blockPatchGAN
      ThermalGANUNetPatchGAN
      I-GANsD-Linket34PatchGAN
      InfraGANUNetUNetGAN
      OursUConvNextSPatchGAN
    • Table 6. EPE of six matching algorithms

      View table
      View in Article

      Table 6. EPE of six matching algorithms

      EPE

      VEDAI

      SIFTSURFORBD2-NetSuperGlueLoFTR
      RGB0.131 72.334 48.151 80.767 30.334 80.136 5
      Pix2Pix0.311 60.245 30.660 10.387 10.477 00.052 6
      ThermalGAN0.118 00.170 60.196 70.284 30.302 30.027 2
      I-GANs0.631 00.795 41.029 80.542 00.433 10.070 4
      InfraGAN0.109 60.166 20.287 30.265 90.314 50.021 6
      Ours0.081 80.154 70.106 50.238 30.257 10.017 8

      EPE

      OSU

      SIFTSURFORBD2-NetSuperGlueLoFTR
      RGB52.614 828.740 638.851 51.695 60.877 62.533 4
      Pix2Pix0.105 30.099 90.125 50.218 20.178 00.043 3
      ThermalGAN0.126 10.105 00.138 00.233 40.173 50.042 7
      I-GANs0.147 10.117 40.154 00.259 30.212 50.058 7
      InfraGAN0.122 70.105 60.140 00.224 60.163 80.040 0
      Ours0.080 80.078 90.088 80.167 10.145 60.034 9

      EPE

      KAIST

      SIFTSURFORBD2-NetSuperGlueLoFTR
      RGB40.716 036.108 233.319 12.765 04.387 710.397 7
      Pix2Pix2.885 91.744 72.430 10.855 91.045 20.546 8
      ThermalGAN1.498 31.533 51.055 80.970 20.944 10.807 6
      I-GANs2.089 52.399 41.814 81.201 21.523 72.574 3
      InfraGAN2.024 11.438 62.184 20.726 60.803 60.385 4
      Ours0.630 30.552 10.622 20.477 90.495 50.181 3
    Tools

    Get Citation

    Copy Citation Text

    Decao MA, Yong XIAN, Juan SU, Shaopeng LI, Bing LI. Visible-to-infrared Image Translation Based on an Improved Conditional Generative Adversarial Nets[J]. Acta Photonica Sinica, 2023, 52(4): 0410003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 8, 2022

    Accepted: Dec. 24, 2022

    Published Online: Jun. 21, 2023

    The Author Email: XIAN Yong (xy603xy@163.com)

    DOI:10.3788/gzxb20235204.0410003

    Topics