Chinese Journal of Quantum Electronics, Volume. 29, Issue 6, 657(2012)
Turbulence-degraded image restoration method using the second-order accelerated Richardson-Lucy algorithm based on Huber regularization
[2] [2] Ayers G A, Dainty J C. Iterative blind deconvolution method and its applications [J]. Opt. Lett., 1988, 13(7): 547-549.
[4] [4] Caron J N, Namazi N M, et al. Noniterative blind data restoration by use of an extracted filter function [J]. Appl. Opt., 2002, 41(32): 68-84.
[5] [5] Arbel D, Cohen E, Citroen M, et al. Landsat TM satellite image restoration using Kalman filters [J]. Photogrammetric Engineering & Remote Sensing, 2004, 70(1): 91-100.
[9] [9] Richardson W H. Bayesian-based iterative method of image restoration [J]. Opt. Soc. Am. A, 1972, 62(1): 55-59.
[10] [10] Lucy L B. An iterative technique for the rectification of observed distributions [J]. Astron. J., 1974, 79: 745-754.
[11] [11] Fish D A, Brinicombe A M, Pike E R, et al. Blind deconvolution by means of the Richardson-Lucy algorithm [J]. Opt. Soc. Am. A, 1995, 12(1): 58-65.
[12] [12] De Monve J B, Scarfone E, Le Calvez S, et al. Image-adaptive deconvolution for three-dimensional deep biological imaging [J]. Biophys, 2003, 85(6): 3991-4001.
[13] [13] Huber P J. Robust estimation of a location parameter [J]. Ann. Math. Stats., 1964, 35: 73-101.
[14] [14] Remmele S, et al. Vector extrapolation-based acceleration of regularized Richardson-Lucy image deblurring [C]. Algorithm-Systeme-Anwendungen Proceedings, 2009, part 15: 400-404.
[15] [15] Biggs D S C. Accelerated Iterative Blind Deconvolution [D]. New Zealand: PhD thesis of University of Auckland, 1998.
Get Citation
Copy Citation Text
SHAO Hui, WANG Jian-ye, XU Peng, FDS Team. Turbulence-degraded image restoration method using the second-order accelerated Richardson-Lucy algorithm based on Huber regularization[J]. Chinese Journal of Quantum Electronics, 2012, 29(6): 657
Category:
Received: Feb. 20, 2012
Accepted: --
Published Online: Nov. 29, 2012
The Author Email: Hui SHAO (shaohui@aiai.edu.cn)