Journal of Synthetic Crystals, Volume. 52, Issue 9, 1624(2023)

Simulation and Performance of 1 060 nm Antimonide Strain-Compensated Active Laser Diode

LIANG Caian1,*... DONG Hailiang1,2, JIA Zhigang1,2, JIA Wei1,2, LIANG Jian3, and XU Bingshe1,24 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • show less
    References(33)

    [1] [1] LIU X S, HU M H, CANEAU C G, et al. Thermal management strategies for high power semiconductor pump lasers[J]. IEEE Transactions on Components and Packaging Technologies, 2006, 29(2): 268-276.

    [2] [2] DAVID A, YOUNG N G, HURNI C A, et al. Quantum efficiency of Ⅲ-nitride emitters: evidence for defect-assisted nonradiative recombination and its effect on the green gap[J]. Physical Review Applied, 2019, 11(3): 031001.

    [3] [3] TOMM J W, ZIEGLER M, HEMPEL M, et al. Mechanisms and fast kinetics of the catastrophic optical damage (COD) in GaAs-based diode lasers[J]. Laser & Photonics Reviews, 2011, 5(3): 422-441.

    [6] [6] LI H, WOLF P, MOSER P, et al. Impact of the quantum well gain-to-cavity etalon wavelength offset on the high temperature performance of high bit rate 980-nm VCSELs[J]. IEEE Journal of Quantum Electronics, 2014, 50(8): 613-621.

    [7] [7] QIAO Z L, LI X A, WANG H, et al. High-performance 1.06-μm InGaAs/GaAs double-quantum-well semiconductor lasers with asymmetric heterostructure layers[J]. Semiconductor Science and Technology, 2019, 34(5): 055013.

    [8] [8] MALG A, DBROWSKA E, GRODECKI K. Temperature sensitivity (T0) of tensile-strained GaAsP/(AlGa)As double-barrier separate confinement heterostructure laser diodes for 800 nm band[J]. Journal of Applied Physics, 2008, 103(11): 113109.

    [11] [11] LIU H Y, XU B, WEI Y Q, et al. High-power and long-lifetime InAs/GaAs quantum-dot laser at 1080 nm[J]. Applied Physics Letters, 2001, 79(18): 2868-2870.

    [13] [13] LEVY M, BERK Y, KARNI Y. Effect of compressive and tensile strain on the performance of 808-nm QW high power laser diodes[C]//Lasers and Applications in Science and Engineering. Proc SPIE 6104, High-Power Diode Laser Technology and Applications Ⅳ, San Jose, California, USA. 2006, 6104: 93-104.

    [14] [14] PARK S H. Electronic properties of strain-compensated GaAsSb/GaAs/GaAsP quantum well structures[J]. New Physics: Sae Mulli, 2011, 61(8): 744-749.

    [15] [15] ZHENG X H, JIANG D S, JOHNSON S, et al. Structural and optical properties of strain-compensated GaAsSb/GaAs quantum wells with high Sb composition[J]. Applied Physics Letters, 2003, 83(20): 4149-4151.

    [16] [16] JIANG D S, BIAN L F, LIANG X G, et al. Structural and optical properties of GaAsSb/GaAs heterostructure quantum wells[J]. Journal of Crystal Growth, 2004, 268(3/4): 336-341.

    [17] [17] HUANG C T, WU J D, LIU C F, et al. Optical characterization of a GaAsSb/GaAs/GaAsP strain-compensated quantum well structure grown by metal-organic vapor phase epitaxy[J]. Journal of Crystal Growth, 2013, 370: 182-185.

    [18] [18] HUANG C T, WU J D, LIU C F, et al. Optical characterization of a strain-compensated GaAs0.64Sb0.36/GaAs0.79P0.21 quantum well structure grown by metal organic vapor phase epitaxy[J]. Materials Chemistry and Physics, 2012, 134(2/3): 797-802.

    [19] [19] LI T, HAO E, ZHANG Y. High power, 1060-nm diode laser with an asymmetric hetero-waveguide[J]. Quantum Electronics, 2015, 45(7): 607-609.

    [23] [23] HALLMAN L W, RYVKIN B S, AVRUTIN E A, et al. High power-m pulsed laser diode with asymmetric waveguide and active layer near p-cladding[J]. IEEE Photonics Technology Letters, 2019, 31(20): 1635-1638.

    [24] [24] MALAG A, DABROWSKA E, TEODORCZYK M, et al. Asymmetric heterostructure with reduced distance from active region to heatsink for 810-nm range high-power laser diodes[J]. IEEE Journal of Quantum Electronics, 2012, 48(4): 465-471.

    [25] [25] BUDA M, HAY J, TAN H H, et al. Low loss, thin p-clad 980-nm InGaAs semiconductor laser diodes with an asymmetric structure design[J]. IEEE Journal of Quantum Electronics, 2003, 39(5): 625-633.

    [28] [28] CHEN B L, JIANG W Y, HOLMES A L Jr. Design of strain compensated InGaAs/GaAsSb type-Ⅱ quantum well structures for mid-infrared photodiodes[J]. Optical and Quantum Electronics, 2012, 44(3): 103-109.

    [29] [29] SUKHOIVANOV I A, MASHOSHYNA O V, KONONENKO V K, et al. How to restrain Auger recombination predominance in the threshold of asymmetric bi-quantum-well lasers[J]. Microelectronics Journal, 2005, 36(3/4/5/6): 264-268.

    [30] [30] GALLER B, LUGAUER H J, BINDER M, et al. Experimental determination of the dominant type of auger recombination in InGaN quantum wells[J]. Applied Physics Express, 2013, 6(11): 112101.

    [31] [31] MEYER J R, HOFFMAN C A, BARTOLI F J, et al. Type-Ⅱ quantum-well lasers for the mid-wavelength infrared[J]. Applied Physics Letters, 1995, 67(6): 757-759.

    [32] [32] YUAN Q H, JING H Q, ZHONG L, et al. High performance 9xx nm high power semiconductor laser[J]. Chinese Journal of Luminescence, 2020, 41(2): 194-198.

    [33] [33] WU S H, LI T, WANG Z F, et al. Study of temperature effects on the design of active region for 808 nm high-power semiconductor laser[J]. Crystals, 2023, 13(1): 85.

    [34] [34] BONORA S, PILAR J, LUCIANETTI A, et al. Design of deformable mirrors for high power lasers[J]. High Power Laser Science and Engineering, 2016, 4: e16.

    [35] [35] RUIZ M, ODRIOZOLA H, KWOK C H, et al. High-brightness tapered lasers with an Al-free active region at 1060 nm[C]//SPIE OPTO: Integrated Optoelectronic Devices. Proc SPIE 7230, Novel in-Plane Semiconductor Lasers Ⅷ, San Jose, California, USA. 2009, 7230: 267-274.

    [36] [36] CAI J, KANSKAR M. 67% CW power conversion efficiency from Al-free 1 060 nm emitting diode lasers[J]. Electronics Letters, 2009, 45(13): 680.

    [37] [37] GORAI A, PANDA S, BISWAS D. Advantages of InGaN/InGaN quantum well light emitting diodes: better electron-hole overlap and stable output[J]. Optik, 2017, 140: 665-672.

    [38] [38] TANSU N, MAWST L J. Design analysis of 1550-nm GaAsSb-(In)GaAsN type-Ⅱ quantum-well laser active regions[J]. IEEE Journal of Quantum Electronics, 2003, 39(10): 1205-1210.

    [39] [39] MOTYKA M, RYCZKO K, SK G, et al. Type Ⅱ quantum wells on GaSb substrate designed for laser-based gas sensing applications in a broad range of mid infrared[J]. Optical Materials, 2012, 34(7): 1107-1111.

    [43] [43] RYVKIN B S, AVRUTIN E A, KOSTAMOVAARA J T. Asymmetric-waveguide, short cavity designs with a bulk active layer for high pulsed power eye-safe spectral range laser diodes[J]. Semiconductor Science and Technology, 2020, 35(8): 085008.

    [44] [44] SUKHOIVANOV I A, MASHOSHINA O V, KONONENKO V K, et al. Temperature dependence of the threshold and auger recombination in asymmetric quantum-well heterolasers[C]//5th International Workshop on Laser and Fiber-Optical Networks Modeling, 2003. Proceedings of LFNM. September 19-20, 2003, Alushta, Ukraine. IEEE, 2003: 255-258.

    [45] [45] WANG H L, ZHONG L, HOU J D, et al. 1.06 μm high-power InGaAs/GaAsP quantum well lasers[J]. Journal of Semiconductors, 2017, 38(11): 114005.

    [46] [46] LIN X, DAI X L, YE Z K, et al. Highly-efficient thermoelectric-driven light-emitting diodes based on colloidal quantum dots[J]. Nano Research, 2022, 15(10): 9402-9409.

    Tools

    Get Citation

    Copy Citation Text

    LIANG Caian, DONG Hailiang, JIA Zhigang, JIA Wei, LIANG Jian, XU Bingshe. Simulation and Performance of 1 060 nm Antimonide Strain-Compensated Active Laser Diode[J]. Journal of Synthetic Crystals, 2023, 52(9): 1624

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 6, 2023

    Accepted: --

    Published Online: Oct. 7, 2023

    The Author Email: Caian LIANG (2899137630@qq.com)

    DOI:

    CSTR:32186.14.

    Topics