Journal of Terahertz Science and Electronic Information Technology , Volume. 22, Issue 11, 1228(2024)
Recent advances in terahertz noise source
[1] [1] CUADRADO-CALLE D, PIIRONEN P, AYLLON N. Solid-state diode technology for millimeter and submillimeter-wave remote sensing applications: current status and future trends[J]. IEEE Microwave Magazine, 2022, 23(6): 44-56. doi: 10.1109/MMM.2022.3155031.
[3] [3] LEONG K M K H, MEI X B, YOSHIDA W, et al. A 0.85 THz low noise amplifier using InP HEMT transistors[J]. IEEE Microwave and Wireless Components Letters, 2015, 25(6): 397-399. doi: 10.1109/LMWC.2015.2421336.
[4] [4] MOLTER D, KOLANO M, VON FREYMANN G. Terahertz cross-correlation spectroscopy driven by incoherent light from a superluminescent diode[J]. Optics Express, 2019, 27(9): 12659-12665. doi: 10.1364/OE.27.012659.
[5] [5] ISPIR M, YILDIRIM A. Real-time signal generator for noise radar[J]. IEEE Aerospace and Electronic Systems Magazine, 2020, 35(9): 42-49. doi: 10.1109/MAES.2020.2997415.
[7] [7] COOPER K B, DENGLER R J, CHATTOPADHYAY G, et al. A high-resolution imaging radar at 580 GHz[J]. IEEE Microwave and Wireless Components Letters, 2008, 18(1): 64-66. doi: 10.1109/LMWC.2007.912049.
[8] [8] XU Haowen, LU Hao, WANG Zhenzhan, et al. The system design and preliminary tests of the THz Atmospheric Limb Sounder (TALIS)[J]. IEEE Transactions on Instrumentation and Measurement, 2022(71): 1-12. doi: 10.1109/TIM.2021.3135008.
[9] [9] JOHNSON J B. Thermal agitation of electricity in conductors[J]. Nature, 1927, 119(2984): 50-51. doi: 10.1038/119050c0.
[10] [10] NYQUIST H. Thermal agitation of electricity in conductors[J]. Physical Review, 1928(32): 110-113.
[11] [11] HUGHES V A. Absolute calibration of a standard temperature noise source for use with s-band radiometers[J]. Proceedings of the IEE-Part B: Radio and Electronic Engineering, 1956, 103(11): 669-672. doi: 10.1049/pi-b-1.1956.0230.
[12] [12] DAVIS Q V. A high temperature termination for use at short millimetre wavelengths[J]. Journal of Scientific Instruments, 1963(40): 524. doi: 10.1088/0950-7671/40/11/305.
[13] [13] DAYWITT W C. The noise temperature of an arbitrarily shaped microwave cavity with application to a set of millimetre wave primary standards[J]. Metrologia, 1994(30): 471. doi: 10.1088/0026-1394/30/5/002.
[14] [14] TERAHERTZ. Welcome to terahertz home of QMC Instruments Ltd & Thomas Keating Ltd[EB/OL]. [2023-08-05]. http://www.electroform.co.uk/.
[18] [18] WELLS J S, DAYWITT W C, MILLER C K S. Measurement of effective temperatures of microwave noise sources[J]. IEEE Transactions on Instrumentation and Measurement, 1964, IM-13(1): 17-28. doi: 10.1109/TIM.1964.4313364.
[19] [19] MILLER C K S, DAYWITT W C, ARTHUR M G. Noise standards, measurements, and receiver noise definitions[J]. Proceedings of the IEEE, 1967, 55(6): 865-877. doi: 10.1109/PROC.1967.5700.
[20] [20] NOISECOM. UBS-series and Nc5110a from Noisecom corporation[EB/OL]. [2023-08-05]. https://noisecom.com/.
[21] [21] KANG T W, KIM J H, KANG N W, et al. A thermal noise measurement system for noise temperature standards in W-band[J]. IEEE Transactions on Instrumentation and Measurement, 2015, 64(6): 1741-1747. doi: 10.1109/TIM.2015.2398957.
[24] [24] FRATER R H, WILLIAMS D R. An active "cold" noise source[J]. IEEE Transactions on Microwave Theory and Techniques, 1981, 29(4): 344-347. doi: 10.1109/TMTT.1981.1130355.
[25] [25] DUNLEAVY L P, SMITH M C, LARDIZABAL S M, et al. Design and characterization of FET based cold/hot noise sources[C]//1997 IEEE MTT-S International Microwave Symposium Digest. Denver, CO, USA: IEEE, 1997: 1293-1296. doi: 10.1109/MWSYM.1997.596564.
[26] [26] BUHLES P M, LARDIZABAL S M. Design and characterization of MMIC active cold loads[C]//2000 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium Digest of Papers (Cat. No. 00CH37096.) Boston, MA, USA: IEEE, 2000: 221-225. doi: 10.1109/RFIC.2000.854453.
[27] [27] DIEBOLD S, WEISSBRODT E, MASSLER H, et al. A W-band monolithic integrated active hot and cold noise source[J]. IEEE Transactions on Microwave Theory and Techniques, 2014, 62(3): 623-630. doi: 10.1109/TMTT.2014.2299770.
[31] [31] HAITZ R H, VOLTMER F W. Noise of a self-sustaining avalanche discharge in silicon: studies at microwave frequencies[J]. Journal of Applied Physics, 1968, 39(7): 3379-3384. doi: 10.1063/1.1656784.
[33] [33] BOWEN J W. A solid-state noise source for millimetre wave spectrometry[J]. International Journal of Infrared and Millimeter Waves, 1996, 17(3): 479-491. doi: 10.1007/BF02088023.
[34] [34] EHSAN N, PIEPMEIER J, SOLLY M, et al. A robust waveguide millimeter-wave noise source[C]//2015 European Microwave Conference (EuMC). Paris, France: IEEE, 2015: 853-856. doi: 10.1109/EuMC.2015.7345898.
[35] [35] AZEVEDO GONCALVES J C, GHANEM H, BOUVOT S, et al. Millimeter-wave noise source development on SiGe BiCMOS 55 nm technology for applications up to 260 GHz[J]. IEEE Transactions on Microwave Theory and Techniques, 2019, 67(9): 3732-3742. doi: 10.1109/TMTT.2019.2926289.
[36] [36] GHANEM H, AZEVEDO GONCALVES J C, CHEVALIER P, et al. Modeling and analysis of a broadband Schottky diode noise source up to 325 GHz based on 55 nm SiGe BiCMOS technology[J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 68(6): 2268-2277. doi: 10.1109/TMTT.2020.2980513.
[37] [37] FIORESE V, AZEVEDO GONCALVES J C, BOUVOT S, et al. A 140 GHz to 170 GHz active tunable noise source development in SiGe BiCMOS 55 nm technology[C]//2021 the 16th European Microwave Integrated Circuits Conference (EuMIC). London, United Kingdom: IEEE, 2022: 125-128. doi: 10.23919/EuMIC50153.2022.9783645.
[38] [38] ELVA‒1 COMPANY. ISSN‒03 of ELVA‒1 corporation[EB/OL]. [2023-08-05]. https://elva-1.com/.
[39] [39] Cernex. Your ultimate sources for all your: RF, microwave, millimeter-wave components and sub-systems[EB/OL]. [2023-08-05]. https://cernex.com/.
[41] [41] ZHAO Rikang, ZHANG Zhizheng, ZHANG Yu, et al. Design and implementation of 50~110 GHz ultra-broadband noise source[C]//2022 International Conference on Microwave and Millimeter Wave Technology (ICMMT). Harbin, China: IEEE, 2022: 1-3. doi: 10.1109/ICMMT55580.2022.10023241.
[42] [42] PARASHARE C R, KANGASLAHTI P P, BROWN S T, et al. Noise sources for internal calibration of millimeter-wave radiometers[C]//2014 the 13th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad). Pasadena, CA, USA: IEEE, 2014: 157-160. doi: 10.1109/MicroRad.2014.6878930.
[43] [43] FORSTN H, SAIJETS J H, KANTANEN M, et al. Millimeter-wave amplifier-based noise sources in SiGe BiCMOS technology[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(11): 4689-4696. doi: 10.1109/TMTT.2021.3104028.
[44] [44] VIEGAS C, POWELL J, LIU Hairui, et al. Millimeter-wave noise sources using heterodyne mixing of signals[C]//2019 IEEE MTT-S International Microwave and RF Conference (IMARC). Mumbai, India: IEEE, 2019: 1-2. doi: 10.1109/IMaRC45935.2019.9118675.
[45] [45] SONG H J, SHIMIZU N F, KUKUTSU N, et al. Microwave photonic noise source from microwave to sub-terahertz wave bands and its applications to noise characterization[J]. IEEE Transactions on Microwave Theory and Techniques, 2008, 56(12): 2989-2997. doi: 10.1109/TMTT.2008.2007325.
[46] [46] ALI M, GARCA-MUOZ L E, NELLEN S, et al. High-speed terahertz PIN photodiode with WR-3 rectangular waveguide output[C]//2020 the 45th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). Buffalo, NY, USA: IEEE, 2020: 1-2. doi: 10.1109/IRMMW-THz46771.2020.9370781.
[47] [47] CHAO Enfei, XIONG Bing, SUN Changzheng, et al. D-band MUTC photodiodes with flat frequency response[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2022, 28(2: Optical Detectors): 1-8. doi: 10.1109/JSTQE.2021.3115488.
[48] [48] HUGGARD P G, AZCONA L, ELLISON B N, et al. Application of 1.55 /spl mu/m photomixers as local oscillators & noise sources at millimetre wavelengths[C]//Infrared and Millimeter Waves, Conference Digest of the 2004 Joint 29th International Conference on 2004 and the 12th International Conference on Terahertz Electronics, 2004. Karlsruhe, Germany: IEEE, 2004: 771-772. doi: 10.1109/ICIMW.2004.1422321.
[49] [49] ITO H, FURUTA T, NAKAJIMA F, et al. Photonic generation of continuous THz wave using uni-traveling-carrier photodiode[J]. Journal of Lightwave Technology, 2005, 23(12): 4016-4021. doi: 10.1109/JLT.2005.858221.
[50] [50] OEUVRARD S, LAMPIN J F, DUCOURNAU G, et al. On wafer silicon integrated noise source characterization up to 110 GHz based on Germanium-on-Silicon photodiode[C]//2014 International Conference on Microelectronic Test Structures (ICMTS). Udine, Italy: IEEE, 2014: 150-154. doi: 10.1109/ICMTS.2014.6841484.
[51] [51] GHANEM H, LPILLIET S, DANNEVILLE F, et al. 300 GHz intermodulation/noise characterization enabled by a single THz photonics source[J]. IEEE Microwave and Wireless Components Letters, 2020, 30(10): 1013-1016. doi: 10.1109/LMWC.2020.3020817.
[52] [52] KUO F M, SHI J W, TSAI H J, et al. Optoelectronic generation of millimeter-wave white-light at W-band with very-fast sweeping rate by use of high-power and broadband photonic emitters[C]//2010 Conference on Optical Fiber Communication (OFC/NFOEC), collocated National Fiber Optic Engineers Conference. San Diego, CA, USA: IEEE, 2010: 1-2. doi: 10.1364/NFOEC.2010.JWA51.
[53] [53] ZHOU Tao, ZHANG Rong, YAO Chen, et al. Terahertz three-dimensional imaging based on computed tomography with photonics-based noise source[J]. Chinese Physics Letters, 2017, 34(8): 084206. doi: 10.1088/0256-307X/34/8/084206.
[54] [54] SUN Yuehui, CHEN Yongxiang, LI Pu, et al. Flat millimeter-wave noise generation by optically mixing multiple wavelength-sliced ASE lights[J]. IEEE Photonics Technology Letters, 2021, 33(22): 1270-1273. doi: 10.1109/LPT.2021.3117022.
[56] [56] LIU Wenjie, HUANG Yimin, SUN Yuehui, et al. Broadband and flat millimeter-wave noise source based on the heterodyne of two Fabry-Perot lasers[J]. Optics Letters, 2022, 47(3): 541-544. doi: 10.1364/OL.447656.
[59] [59] QUINSTAR CORPORATION. QNS‒FB12TW from Quinstar corporation[EB/OL]. [2023-08-05]. https://quinstar.com/.
[60] [60] ERAVANT CORPORATION. Eravant's STZ‒06‒IT2[EB/OL]. [2023-08-05]. https://www.eravant.com/.
[61] [61] NOISEWAVE CORPORATION. Noisewave's NW75G110‒W[EB/OL]. [2023-08-05]. https://noisewave.com/.
[62] [62] VDI CORPORATION. WR5.1NS from VDI corporation[EB/OL]. [2023-08-05]. https://www.vadiodes.com/en/.
Get Citation
Copy Citation Text
LIU Lijuan, QIN Feifei, SUN Yuehui, LIU Wenjie, WANG Yuncai. Recent advances in terahertz noise source[J]. Journal of Terahertz Science and Electronic Information Technology , 2024, 22(11): 1228
Category:
Received: Aug. 5, 2023
Accepted: Jan. 3, 2025
Published Online: Jan. 3, 2025
The Author Email: Yuncai WANG (wangyc@gdut.edu.cn)