Opto-Electronic Engineering, Volume. 41, Issue 3, 43(2014)
Unsupervised Learning Algorithm for Abnormal Behavior Detection
[1] [1] Poppe R. Vision-based human motion analysis: An overview [J]. Computer Vision and Image Understanding(S1077-3142), 2007, 104(2): 4-18.
[2] [2] Popoola O P, Wang K J. Video-Based abnormal behavior recognition-A review [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews(S1094-6977), 2012, 42(6): 865-878.
[3] [3] Bouttefroy P L M, bouzerdoum A, Phung S L, et al. Abnormal behavior detection using a multi-modal stochastic learning approach [C]// International Conference on Intelligent Sensors, Sensor Networks and Information Processing, Sydney NSW, Dec 15-18, 2008: 121-126.
[4] [4] CUI Yongyan, GAO Yang. Abnormal Event Detection Based on the Multi-Instance Learning [J]. Pattern Recognition and Artificial Intelligence, 2011, 24(6): 862-868.
[5] [5] Jacinto Nascimento, Jorge Marques, Joao Lemos. Modeling and classifying human activities from trajectories using a class of space-varying parametric motion fields [J]. IEEE Transactions on Image Processing(S1057-7149), 2013, 22(5): 2066-2080.
[6] [6] Chen Yu-feng, Liang Guo-yuan, Lee Ka-keung, et al. Abnormal behavior detection by multi-SVM-based Bayesian network [C]// International Conference on Information Acquisition, Seogwipo-si, July 8-11, 2007: 298-303.
[7] [7] HU Zhilan, JIANG Fan, WANG Guijin, et al. Anomaly Detection Based on Motion Direction [J]. Acta Automatica Sinica, 2008, 34(11): 1348-1357.
[8] [8] Yannick Benezeth, Pierre-Marc Jodoin, Venkatesh Saligrama. Abnormality detection using low-level co-occurring events [J]. Pattern Recognition Letters(S0167-8655), 2011, 32(3): 423-431.
[9] [9] Vili Kellokumpu, Guoying Zhao, Matti Pietikainen. Recognition of human actions using texture descriptors [J]. Machine Vision and Applications(S0932-8092), 2011, 22(5): 767-780.
[10] [10] DU Jianhao, XU Li. Abnormal behavior detection based on regional optical flow [J]. Journal of Zhejiang University: Engineering Science, 2011, 45(7): 1161-1166.
[11] [11] Horn B K P, Schunck B G. Determining optical flow [J]. Artificial Intelligence(S0004-3702), 1981, 17(1/3): 185-203.
[12] [12] Stauffer C, Grimson W E L. Adaptive back-ground mixture models for real time tracking [C]// Proceedings of Computer Vision and Pattern Recognition, Fort Collins, Jun 23-25, 1999: 246-252.
[13] [13] BOUGUET J Y. Pyramidal implementation of the Lucas Kanade feature tracker description of the algorithm [R]. Intel Corporation Microprocessor Research Labs, 2005.
[15] [15] CASIA Action Database [DB/OL]. http: //www.cbsr.ia.ac.cn, 2007.
[16] [16] CAVIAR Test Case Scenarios [DB/OL]. http: //www.dai.ed.ac.uk/homes/rbf/CAVIAR/, 2004.
[17] [17] BEHAVE Interactions Test Case Scenarios [DB/OL]. http: //groups.inf.ed.ac.uk/vision/, 2007.
Get Citation
Copy Citation Text
WANG Xian, LIU Xuqing, SONG Shulin, SHEN Yuan. Unsupervised Learning Algorithm for Abnormal Behavior Detection[J]. Opto-Electronic Engineering, 2014, 41(3): 43
Category:
Received: Aug. 16, 2013
Accepted: --
Published Online: Apr. 9, 2014
The Author Email: Xian WANG (wwxx.2008@163.com)