Semiconductor Optoelectronics, Volume. 41, Issue 3, 331(2020)
Study on Radiation-harden Technologies for CMOS Image Sensors
[1] [1] Hopkinson G R. Radiation effects in a CMOS active pixel sensor[J]. IEEE Trans. Nuclear Science, 2000, 47(6): 2480-2484.
[2] [2] Hancock B R, Stirbl R C, Cunningham T J, et al. CMOS active pixel sensor specific performance effects on star tracker/imager position accuracy[J]. Proc. SPIE, 2002, 4284: 426872.
[4] [4] Qian Xinyuan, Yu Hang, Zhao Bo, et al. Design of a radiation tolerant CMOS image sensor[C]// Inter. Symp. on Integrated Circuits (ISIC), 2011: 412-415.
[8] [8] Ohta J. Smart CMOS Image Sensors and Applications[M]. Florida: CRC Press, 2007: 11-58.
[11] [11] Goiffon V, Cervantes P, Virmontois C, et al. Generic radiation hardened photodiode layouts for deep submicron CMOS image sensor processes[J]. IEEE Trans. on Nuclear Science, 2011, 58(6): 3076-3084.
[12] [12] Balaji Narasimham, Gambles J W, Shuler R L, et al. Quantifying the effect of guard rings and guard drains in mitigating charge collection and charge spread[J]. IEEE Trans. on Nuclear Science, 2008, 55(6): 3456-3460.
[13] [13] Matush B I, Mozdzen T J, Clark L T, et al. Area-efficient temporally hardened by design flip-flop circuits[J]. IEEE Trans. on Nuclear Science, 2010, 57(6): 3588-3590.
[14] [14] Akifumi M, Hiroyuki S, Tsukasa E, et al. DICE-based flip-flop with SET pulse discriminator on a 90nm bulk CMOS process[J]. IEEE Trans. on Nuclear Science, 2010, 57(6): 3602-3608.
Get Citation
Copy Citation Text
LV Yubing, WU Qiongyao, LIU Changju, LI Ming, ZHOU Yajun, LIU Geyang. Study on Radiation-harden Technologies for CMOS Image Sensors[J]. Semiconductor Optoelectronics, 2020, 41(3): 331
Category:
Received: Mar. 10, 2020
Accepted: --
Published Online: Jun. 18, 2020
The Author Email: Yubing LV (bollozard@126.com)