Journal of the Chinese Ceramic Society, Volume. 52, Issue 3, 1157(2024)
Research Progress on A2B2O7(A = Ln3+, B = Zr4+, Hf4+ Ti4+ Ce4+) Transparent Ceramics
[2] [2] Wang Zhengjuan. Fabrication and properties of Ln2M2O7 (M = Zr, Hf) transparent ceramics[D]. Shanghai: Shanghai Institute of Ceramics, Chinese Academy of Sciences, 2015.
[4] [4] JI Yaming. Exploration of hafnate ceramic scintillator and its luminescent characteristics[D]. Shanghai: Shanghai Institute of Ceramics, Chinese Academy of Sciences, 2006.
[6] [6] ZOU Xiaoqing, ZHOU Guohong, YI Hailan, et al. J Inorg Mater, 2011, 26(9): 929-932.
[7] [7] TROJAN-PIEGZA J, GIERLOTKA S, ZYCH E, et al. Spectroscopic studies of nanopowder and nanoceramics La2Hf2O7: Pr scintillator[J]. J Am Ceram Soc, 2014, 97(5): 1595-1601.
[8] [8] YE Y C, LU K L, QI J Q. Developing smart temperature sensing window based on highly transparent rare-earth doped yttrium zirconate ceramics[J]. ACS Appl Mater Interfaces, 2022, 14(34): 39072-39080.
[9] [9] LI Y L, YE Y C, QUAN W K, et al. Investigation of up/down- converted luminescence and related mechanisms in Ho3+/Yb3+ co-doped Y2Zr2O7 highly transparent ceramics as phosphor material[J]. J Lumin, 2022, 251: 119255.
[10] [10] WANG Z J, ZHOU G H, ZHANG J, et al. Luminescence properties of Eu3+-doped Lanthanum gadolinium hafnates transparent ceramics[J]. Opt Mater, 2017, 71: 5-8.
[11] [11] TANG Z, HUANG Z Y, HAN W, et al. Microwave-assisted synthesis of uranium doped Y2Zr2O7 transparent ceramics as potential near-infrared optical lens[J]. Scr Mater, 2020, 178: 90-93.
[13] [13] LI Weiwei. Preparation and properties of Gd2-xMxZr2O7(M=Nd、Sm)transparent ceramics[D]. Mianyang: Southwest University of Science and Technology, 2020.
[15] [15] DENG Ting. Preparation and optical properties of non-stoichiometric A2B2O7 transparent ceramics[D]. Mianyang: Southwest University of Science and Technology, 2021.
[16] [16] AN L Q, ITO A, GOTO T. Effect of calcination temperature on the fabrication of transparent lutetium titanate by spark plasma sintering[J]. Ceram Int, 2012, 38(6): 4973-4977.
[17] [17] WANG Z J, ZHOU G H, JIANG D Y, et al. Recent development of A2B2O7 system transparent ceramics[J]. J Adv Ceram, 2018, 7(4): 289-306.
[20] [20] LI S R, HAN W H, LU K L, et al. Highly transparent Sm2Zr2O7 ceramics with excellent dielectric performance[J]. Appl Phys Lett, 2023, 123(4): 1-5.
[21] [21] TAN L, SU X H, YANG J X, et al. Facile synthesis of high-entropy zirconate nanopowders and their sintering behaviors[J]. J Adv Ceram, 2023, 12(3): 498-509.
[22] [22] WANG Z J, ZHOU G H, QIN X P, et al. Fabrication of LaGdZr2O7 transparent ceramic[J]. J Eur Ceram Soc, 2013, 33(4): 643-646.
[23] [23] SAIF M, SHEBL M, MBAREK A, et al. Synthesis of non-toxic phosphor material based on pyrochlore-type dititanate (Eu3+/Y2Ti2O7)[J]. J Photochem Photobiol A Chem, 2015, 301: 1-5.
[24] [24] ZHANG L X, LI X Y, HU D J, et al. Fabrication and properties of transparent Tb2Ti2O7 magneto-optical ceramics[J]. J Eur Ceram Soc, 2021, 41(14): 7208-7214.
[25] [25] GAO L, ZHU H, WANG L, et al. Hydrothermal synthesis and photoluminescence properties of Gd2Zr2O7: Tb3+ phosphors[J]. MATER LETT, 2011, 65(9): 1360-1362.
[26] [26] TANG Z, HUANG Z, HAN W, et al. Microwave-assisted synthesis of uranium doped Y2Zr2O7 transparent ceramics as potential near-infrared optical lens[J]. Scr Mater, 2020, 178: 90-93
[27] [27] HUANG Z, QI J, ZHOU M, et al. A facile solvothermal method for high-quality Gd2Zr2O7 nanopowder preparation[J]. Ceram Int, 2018, 44(2): 1334-1342.
[28] [28] WANG Z J, ZHOU G H, QIN X P, et al. Transparent La2?xGdxZr2O7 ceramics obtained by combustion method and vacuum sintering[J]. J Alloys Compd, 2014, 585: 497-502.
[29] [29] AUNG Y L, IKESUE A, YASUHARA R, et al. Optical properties of improved Tb2Hf2O7 pyrochlore ceramics[J]. J Alloys Compd, 2020, 822: 153564.
[30] [30] AN L Q, WANG L F, FAN R H, et al. Fabrication and electrical conductivity of Lu2(Ti1-xHfx)2O7 transparent ceramics prepared by spark plasma sintering[J]. J Asian Ceram Soc, 2021, 9(3): 893-901.
[31] [31] JI Y M, JIANG D Y, FEN T, et al. Fabrication of transparent La2Hf2O7 ceramics from combustion synthesized powders[J]. Mater Res Bull, 2005, 40(3): 553-559.
[32] [32] CHEN C F, BRENNECKA G L, SYNOWICKI R A, et al. Transparent polycrystalline Gd2Hf2O7 ceramics[J]. J Am Ceram Soc, 2018, 101(9): 3797-3807.
[33] [33] ZOU X Q, ZHOU G H, YI H L, et al. Fabrication of transparent Y2Hf2O7 ceramic from combustion synthesized powders[J]. J Inorg Mater, 2011, 26(9): 929-932.
[34] [34] AN L Q, ITO A, GOTO T. Fabrication of transparent Lu2Hf2O7 by reactive spark plasma sintering[J]. Opt Mater, 2013, 35(4): 817-819.
[35] [35] WANG Z J, ZHOU G H, ZHANG F, et al. Fabrication and properties of La2-xGdxHf2O7 transparent ceramics[J]. J Lumin, 2016, 169: 612-615.
[36] [36] WANG Z J, ZHOU G H, ZHANG J, et al. Luminescence properties of Eu3+-doped Lanthanum gadolinium hafnates transparent ceramics[J]. Opt Mater, 2017, 71: 5-8.
[37] [37] YASUHARA R, IKESUE A. Magneto-optic pyrochlore ceramics of Tb2Hf2O7 for faraday rotator[J]. Opt Express, 2019, 27(5): 7485-7490.
[38] [38] WANG X J, XIE J J, WANG Z J, et al. Fabrication and properties of Y2Ti2O7 transparent ceramics with excess Y content[J]. Ceram Int, 2018, 44(8): 9514-9518.
[39] [39] WANG Z J, WANG X J, ZHOU G H, et al. Highly transparent yttrium titanate (Y2Ti2O7) ceramics from co-precipitated powders[J]. J Eur Ceram Soc, 2019, 39(10): 3229-3234.
[40] [40] SHLYAKHTINA A V, ABRANTES J C C, LARINA L L, et al. Synthesis and conductivity of Yb2Ti2O7 nanoceramics[J]. Solid State Ion, 2005, 176(17/18): 1653-1656.
[41] [41] AN L Q, ITO A, GOTO T. Highly transparent lutetium titanium oxide produced by spark plasma sintering[J]. J Eur Ceram Soc, 2011, 31(1/2): 237-240.
[42] [42] KIM H, AKDIM B, PARK J, et al. IR transmission prediction, processing, and characterization of dense La2Ce2O7[J]. J Am Ceram Soc, 2021, 104(11): 5659-5670.
[43] [43] WANG Z J, ZHOU G H, QIN X P, et al. Transparent La2?xGdxZr2O7 ceramics obtained by combustion method and vacuum sintering[J]. J Alloys Compd, 2014, 585: 497-502.
[44] [44] HAN W H, YE Y C, LU K L, et al. High-entropy transparent (Y0.2La0.2Gd0.2Yb0.2Dy0.2)2Zr2O7 ceramics as novel phosphor materials with multi-wavelength excitation and emission properties[J]. J Eur Ceram Soc, 2023, 43(1): 143-149.
[45] [45] WANG Z J, ZHOU G H, QIN X P, et al. Fabrication and phase transition of La2?xLuxZr2O7 transparent ceramics[J]. J Eur Ceram Soc, 2014, 34(15): 3951-3958.
[46] [46] WANG Z J, ZHOU G H, QIN X P, et al. Transparent La2?xGdxZr2O7 ceramics obtained by combustion method and vacuum sintering[J]. J Alloys Compd, 2014, 585: 497-502.
[47] [47] ZHAO W W, ZHANG K B, LI W W, et al. Fabrication and optical properties of transparent LaErZr2O7 ceramic with high excess contents of La and Er[J]. Ceram Int, 2019, 45(9): 11717-11722.
[48] [48] ZHAO W W, ZHANG K B, HE Z S, et al. Vacuum sintering of highly transparent La1.28Yb1.28Zr2O7.84 ceramic using nanosized raw powders[J]. Ceram Int, 2018, 44(11): 12535-12538.
[49] [49] LI W W, ZHANG K B, XIE D Y, et al. Characterizations of vacuum sintered Gd2Zr2O7 transparent ceramics using combustion synthesized nanopowder[J]. J Eur Ceram Soc, 2020, 40(4): 1665-1670.
[50] [50] YE Y, TANG Z, JI Z, et al. Fabrication and luminescent properties of holmium doped Y2Zr2O7 transparent ceramics as new type laser material[J]. OPT MATER, 2021, 121: 111643.
[51] [51] LI S, MA K, YE Y, et al. Effect of annealing temperature on optical properties of Erbium doped Y2Zr2O7 transparent ceramics[J]. Ceram Int, 2022, 48(24): 37180-37185.
[52] [52] YU L, ZHANG K, LI W, et al. Fabrication and luminescent properties of Sm-doped Gd2Zr2O7 transparent ceramics[J]. J LUMIN, 2022, 243: 118674.
[53] [53] An L L, Wang Z J, Ito A, et al. Transparent ceramics based on pyrochlores[M]. Pyrochlore Ceramics, Elsevier, 2022: 399-432.
[54] [54] HE Y, LIU K G, XIANG B X, et al. An overview on transparent ceramics with pyrochlore and fluorite structures[J]. J Adv Dielectr, 2020(3): 1-32.
[55] [55] WANG Z J, ZHOU G H, QIN X P, et al. Two-phase LaLuZr2O7 transparent ceramic with high transparency[J]. J Am Ceram Soc, 2014, 97(7): 2035-2037.
[56] [56] WANG Z J, ZHOU G H, QIN X P, et al. Fabrication and phase transition of La2?xLuxZr2O7 transparent ceramics[J]. J Eur Ceram Soc, 2014, 34(15): 3951-3958.
[58] [58] ZHAO Wenwen. Preparation and properties of La2-xMxZr2O7(M=Pr, Er, Yb, Gd) transparent ceramics[D]. Mianyang: Southwest University of Science and Technology, 2019.
[59] [59] DENG T, ZHANG K B, LIU K, et al. Vacuum sintering of highly transparent La1+xYb1+yZr2O7 ceramics with excess La and Yb contents[J]. J Eur Ceram Soc, 2021, 41(3): 2106-2113.
[60] [60] ZHANG K B, LI W W, ZENG J J, et al. Preparation of (La0.2Nd0.2Sm0.2Gd0.2Yb0.2)2Zr2O7 high-entropy transparent ceramic using combustion synthesized nanopowder[J]. J Alloys Compd, 2020, 817: 153328.
[61] [61] Chen Y, Ye Y, Liao W, et al. Fabrication and phase transition of uranium-doped LaxGd2-xZr2O7 transparent ceramics: A prospective neutron detection material[J]. J Am Ceram Soc, 2023, 106(1): 24-31.
[62] [62] ZHANG F X, MANOUN B, SAXENA S K. Pressure-induced order-disorder transitions in pyrochlore RE2Ti2O7 (RE = Y, Gd)[J]. Mater Lett, 2006, 60(21/22): 2773-2776.
[63] [63] ZHANG F Q, ZHAO Y S, ZHAO X B, et al. Pressure-induced structural transition of pyrochlore Tm2Sn2O7[J]. J Alloys Compd, 2023, 963: 171248.
[64] [64] SHLYAKHTINA A V, BELOV D A, STEFANOVICH S Y, et al. δ-Phase to defect fluorite (order-disorder) transition in the R2O3-MO2 (R = Sc, Tm, Lu; M = Zr, Hf) systems[J]. Mater Res Bull, 2011, 46(4): 512-517.
[65] [65] AN L Q, WANG L F, FAN R H, et al. Fabrication and electrical conductivity of Lu2(Ti1-xHfx)2O7 transparent ceramics prepared by spark plasma sintering[J]. J Asian Ceram Soc, 2021, 9(3): 893-901.
[66] [66] SUBRAMANIAN M A, ARAVAMUDAN G, SUBBA RAO G V. Oxide pyrochlores—A review[J]. Prog Solid State Chem, 1983, 15(2): 55-143.
[67] [67] LU X R, SHU X Y, WANG L, et al. Microstructure evolution of rapidly fabricated Gd2-xNdxZr2O7 (0.0≤x≤2.0) by spark plasma sintering[J]. Ceram Int, 2018, 44(2): 2458-2462.
[68] [68] JI Y M, JIANG D, SHI J L. La2Hf2O7: Ti4+ ceramic scintillator for x-ray imaging[J]. J MATER RES, 2005, 20(3): 567-570.
[69] [69] TANG Z, HAN W, HUANG Z Y, et al. Near-infrared luminescent properties of Ln: LaGdZr2O7 (Ln = Nd, Yb) transparent ceramics for solid-state laser applications[J]. Ceram Int, 2020, 46(14): 22270-22275.
[70] [70] TANG Z, QI J Q, HUANG Z Y, et al. Novel multicolor-tunable Eu3+/Bi3+ co-doped Y2Zr2O7 transparent ceramics as potential white- light-emitting materials[J]. Ceram Int, 2022, 48(3): 4216-4222.
[71] [71] ZHANG L X, LI X Y, HU D J, et al. Transparent non-stoichiometric Tb2.45Hf2O7.68 magneto-optical ceramics with high Verdet constant[J]. Scr Mater, 2021, 204: 114158.
[72] [72] LU K L, YE Y C, HAN W H, et al. Defect elimination to enhance photoluminescence and optical transparency of Pr-doped ceramics for self-calibrated temperature feedback windows[J]. J Adv Ceram, 2023, 12(4): 681-694.
[73] [73] HAN W, TANG Z, MA N, et al. Optimization of ball-to-powder weight ratio toward to highly transparent LaGdZr2O7 ceramics processing by solid reactive sintering[J]. J ALLOY COMPD, 2019, 771: 944-950.
[74] [74] XIAO ZHUOHAO, Yu S, Li Y, et al. Materials development and potential applications of transparent ceramics: A review[J]. Mater Sci Eng R Rep, 2020, 139: 100518.
[75] [75] MING W, JIANG Z, LUO G, et al. Progress in Transparent Nano-Ceramics and Their Potential Applications[J]. NANOMATERIALS- BASEL 2022, 12, 1491.
[76] [76] TIAN F, IKESUE A, LI J. Progress and perspectives on composite laser ceramics: A review[J]. J EUR CERAM SOC, 2022, 42(5): 1833-1851.
Get Citation
Copy Citation Text
LAI Yangqun, TAO Shixu, MA Chaoyang, CAO yongge. Research Progress on A2B2O7(A = Ln3+, B = Zr4+, Hf4+ Ti4+ Ce4+) Transparent Ceramics[J]. Journal of the Chinese Ceramic Society, 2024, 52(3): 1157
Category:
Received: Aug. 25, 2023
Accepted: --
Published Online: Aug. 5, 2024
The Author Email: Chaoyang MA (machaoyang@sslab.org.cn)
CSTR:32186.14.