Journal of Inorganic Materials, Volume. 39, Issue 12, 1331(2024)
[2] Y Q LIAO, L X YUAN, Y HAN et al. Pentafluoro (phenoxy) cyclotriphosphazene stabilizes electrode/electrolyte interfaces for sodium-ion pouch cells of 145 Wh kg-1. Advanced Materials, 36, e2312287(2024).
[3] A ZHAO, Y J FANG, X P AI et al. Mixed polyanion cathode materials: toward stable and high-energy sodium-ion batteries. Journal of Energy Chemistry, 635(2021).
[4] X WANG, H J HUANG, F ZHOU et al. High-voltage aqueous planar symmetric sodium ion micro-batteries with superior performance at low-temperature of -40 ℃. Nano Energy, 105688(2021).
[5] A NIMKAR, N SHPIGEL, F MALCHIK et al. Unraveling the role of fluorinated alkyl carbonate additives in improving cathode performance in sodium-ion batteries. ACS Applied Materials & Interfaces, 13, 46478(2021).
[6] W K LI, N ZHAO, Z J BI et al. Na3Zr2Si2PO12 ceramic electrolytes for Na-ion battery: preparation using spray-drying method and its property. Journal of Inorganic Materials, 37, 189(2022).
[7] J N LIANG, J LUO, Q SUN et al. Recent progress on solid-state hybrid electrolytes for solid-state lithium batteries. Energy Storage Materials, 308(2019).
[9] Z J BI, R D SHI, X N LIU.
[10] P C WEN, P F LU, X Y SHI et al. Photopolymerized gel electrolyte with unprecedented room-temperature ionic conductivity for high- energy-density solid-state sodium metal batteries. Advanced Energy Materials, 11, 2002930(2021).
[11] Z J BI, W L HUANG, S MU et al. Dual-interface reinforced flexible solid garnet batteries enabled by
[12] Z J BI, Q F SUN, M Y JIA et al. Molten salt driven conversion reaction enabling lithiophilic and air-stable garnet surface for solid-state lithium batteries. Advanced Functional Materials, 32, 2208751(2022).
[13] T W ZHANG, J ZHANG, S YANG et al. Facile
[14] J SWORAKOWSKI, J LIPINSKI, K JANUS. On the reliability of determination of energies of HOMO and LUMO levels in organic semiconductors from electrochemical measurements. A simple picture based on the electrostatic model. Organic Electronics, 300(2016).
[16] L B ZHANG, J DESHMUKH, H HIJAZI et al. Impact of calcium on air stability of Na[Ni1/3Fe1/3Mn1/3]O2 positive electrode material for sodium-ion batteries. Journal of the Electrochemical Society, 170, 070514(2023).
[17] J FONDARD, E IRISARRI, C COURRÈGES et al. SEI composition on hard carbon in Na-ion batteries after long cycling: influence of salts (NaPF6, NaTFSI) and additives (FEC, DMCF). Journal of the Electrochemical Society, 167, 070526(2020).
[19] M Q LIU, F WU, Y T GONG et al. Interfacial-catalysis-enabled layered and inorganic-rich SEI on hard carbon anodes in ester electrolytes for sodium-ion batteries. Advanced Materials, 35, 2300002(2023).
[20] X Z ZHOU, Q ZHANG, Z ZHU et al. Anion-reinforced solvation for a gradient inorganic-rich interphase enables high-rate and stable sodium batteries. Angewandte Chemie International Edition, 61, e202205045(2022).
[21] Z Y LU, C N GENG, H J YANG et al. Step-by-step desolvation enables high-rate and ultra-stable sodium storage in hard carbon anodes. Proceedings of the National Academy of Sciences of the United States of America, 119, e2210203119(2022).
[22] Y M LI, Y S HU, M M TITIRICI et al. Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries. Advanced Energy Materials, 6, 1600659(2016).
[23] Y LI, Y S HU, X QI et al. Advanced sodium-ion batteries using superior low cost pyrolyzed anthracite anode: towards practical applications. Energy Storage Materials, 191(2016).
Get Citation
Copy Citation Text
Jianfeng KONG, Jiecheng HUANG, Zhaolin LIU, Cunsheng LIN, Zhiyu WANG.
Category:
Received: Apr. 22, 2024
Accepted: --
Published Online: Jan. 21, 2025
The Author Email: LIN Cunsheng (lincunsheng@valiant-cn.com), WANG Zhiyu (zywang@dlut.edu.cn)