International Journal of Extreme Manufacturing, Volume. 6, Issue 3, 32007(2024)

Preparation of single atom catalysts for high sensitive gas sensing

Xinxin He1... Ping Guo1, Xuyang An1, Yuyang Li1, Jiatai Chen1, Xingyu Zhang1, Lifeng Wang2, Mingjin Dai3, Chaoliang Tan4 and Jia Zhang1,* |Show fewer author(s)
Author Affiliations
  • 1Key Laboratory of Microsystems and Microstructure Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin 150080, People’s Republic of China
  • 2Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Locked Bag 20000, Victoria 3220, Australia
  • 3School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798,Singapore
  • 4Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road,Hong Kong Special Administrative Region of China 999077, People’s Republic of China
  • show less
    References(221)

    [1] [1] Song H, Liu J, Lu H Y, Chen C and Ba L 2020 High sensitive gas sensor based on vertical graphene field effect transistor Nanotechnology 31 165503

    [2] [2] Zhou M L, Chen X H, Zhang L J and Zeng W 2020 High performance novel gas sensor device for site environmental protection using Ti0.5Sn0.5O2 nanomaterials J. Nanoelectron. Optoelectron. 15 1423–8

    [3] [3] Zhou J, Li P, Zhang S, Long Y C, Zhou F, Huang Y P,Yang P Y and Bao M H 2003 Zeolite-modified microcantilever gas sensor for indoor air quality control Sens. Actuators B 94 337–42

    [4] [4] Matindoust S, Baghaei-Nejad M, Shahrokh Abadi M H,Zou Z and Zheng L R 2016 Food quality and safety monitoring using gas sensor array in intelligent packaging Sens. Rev. 36 169–83

    [5] [5] Guo H D, Li X W and Qiu Y B 2020 Comparison of global change at the Earth’s three poles using spaceborne Earth observation Sci. Bull. 65 1320–3

    [6] [6] Zhang X, Li C L and Li L F 2022 In situ detection technology for deep sea extreme environment: research status and strategies Bull. Chin. Acad. Sci. 37 932–8

    [7] [7] Wieler R and Heber V S 2003 Noble gas isotopes on the Moon Space Sci. Rev. 106 197–210

    [8] [8] Mahaffy P R et al 2015 The neutral gas and ion mass spectrometer on the Mars atmosphere and volatile evolution mission Space Sci. Rev. 195 49–73

    [9] [9] Liu J, Sun F X, Zhang F, Wang Z, Zhang R, Wang C and Qiu S L 2011 In situ growth of continuous thin metal–organic framework film for capacitive humidity sensing J. Mater. Chem. 21 3775–8

    [10] [10] Zhou Y, Lin X G, Wang Y, Liu G Q, Zhu X Y, Huang Y K,Guo Y C, Gao C and Zhou M 2017 Study on gas sensing of reduced graphene oxide/ZnO thin film at room temperature Sens. Actuators B 240 870–80

    [11] [11] Alfano B, Polichetti T, Mauriello M, Miglietta M L,Ricciardella F, Massera E and Di Francia G 2016 Modulating the sensing properties of graphene through an eco-friendly metal-decoration process Sens. Actuators B 222 1032–42

    [12] [12] Zhu Q Q, Gu D, Liu Z, Huang B Y and Li X G 2021 Au-modified 3D SnS2 nano-flowers for low-temperature NO2 sensors Sens. Actuators B 349 130775

    [13] [13] Li X L, Lou T J, Sun X M and Li Y D 2004 Highly sensitive WO3 hollow-sphere gas sensors Inorg. Chem. 43 5442–9

    [14] [14] Wang X N, Sun X L, Hu P A, Zhang J, Wang L F, Feng W,Lei S B, Yang B and Cao W W 2013 Colorimetric sensor based on self-assembled polydiacetylene/graphene-stacked composite film for vapor-phase volatile organic compounds Adv. Funct.Mater. 23 6044–50

    [15] [15] Wang L Y 2020 Metal-organic frameworks for QCM-based gas sensors: a review Sens. Actuators A 307 111984

    [16] [16] Vashist S K and Vashist P 2011 Recent advances in quartz crystal microbalance-based sensors J. Sens. 2011 571405

    [17] [17] O’Sullivan C K and Guilbault G G 1999 Commercial quartz crystal microbalances—theory and applications Biosens.Bioelectron. 14 663–70

    [18] [18] Chang A, Li H Y, Chang I N and Chu Y H 2018 Affinity ionic liquids for chemoselective gas sensing Molecules 23 2380

    [19] [19] Li D S, Xie Z H, Qu M J, Zhang Q, Fu Y Q and Xie J 2021 Virtual sensor array based on butterworth-van Dyke equivalent model of QCM for selective detection of volatile organic compounds ACS Appl. Mater. Interfaces13 47043–51

    [20] [20] Tang Y L, Xu X F, Han S B, Cai C, Du H R, Zhu H, Zu X T and Fu Y Q 2020 ZnO-Al2O3 nanocomposite as a sensitive layer for high performance surface acoustic wave H2S gas sensor with enhanced elastic loading effect Sens.Actuators B 304 127395

    [21] [21] Tang Y L, Xu X F, Du H R, Zhu H, Li D J, Ao D Y, Guo Y J,Fu Y Q and Zu X T 2020 Cellulose nano-crystals as a sensitive and selective layer for high performance surface acoustic wave HCl gas sensors Sens. Actuators A 301 111792

    [22] [22] Li M et al 2019 Colloidal quantum dot-based surface acoustic wave sensors for NO2-sensing behavior Sens.Actuators B 287 241–9

    [23] [23] Li H et al 2019 Surface acoustic wave NO2 sensors utilizing colloidal SnS quantum dot thin films Surf. Coat. Technol.362 78–83

    [24] [24] Park W, Park J, Jang J, Lee H, Jeong H, Cho K, Hong S and Lee T 2013 Oxygen environmental and passivation effects on molybdenum disulfide field effect transistors Nanotechnology 24 095202

    [25] [25] Fahad H M, Gupta N, Han R, Desai S B and Javey A 2018 Highly sensitive bulk silicon chemical sensors with sub-5nm thin charge inversion layers ACS Nano 12 2948–54

    [26] [26] Hong S, Wu M L, Hong Y, Jeong Y, Jung G, Shin W, Park J,Kim D, Jang D and Lee J H 2021 FET-type gas sensors: a review Sens. Actuators B 330 129240

    [27] [27] Wu Z L, Li Z J, Li H, Sun M X, Han S B, Cai C, Shen W Z and Fu Y Q 2019 Ultrafast response/recovery and high selectivity of the H2S gas sensor based on α-Fe2O3 nano-ellipsoids from one-step hydrothermal synthesis ACS Appl. Mater. Interfaces 11 12761–9

    [28] [28] Khan A H, Rao M V and Li Q L 2019 Recent advances in electrochemical sensors for detecting toxic gases: NO2,SO2 and H2S Sensors 19 905

    [29] [29] Fergus J W 2007 Solid electrolyte based sensors for the measurement of CO and hydrocarbon gases Sens.Actuators B 122 683–93

    [30] [30] Dubbe A 2003 Fundamentals of solid state ionic micro gas sensors Sens. Actuators B 88 138–48

    [31] [31] Ji H C, Zeng W and Li Y Q 2019 Gas sensing mechanisms of metal oxide semiconductors: a focus review Nanoscale11 22664–84

    [32] [32] Kumar R, Liu X H, Zhang J and Kumar M 2020 Room-temperature gas sensors under photoactivation:from metal oxides to 2D materials Nano-Micro Lett.12 164

    [33] [33] Nikolic M V, Milovanovic V, Vasiljevic Z Z and Stamenkovic Z 2020 Semiconductor gas sensors:materials, technology, design, and application Sensors20 6694

    [34] [34] Penza M, Rossi R, Alvisi M, Signore M A, Cassano G,Dimaio D, Pentassuglia R, Piscopiello E, Serra E and Falconieri M 2009 Characterization of metal-modified and vertically-aligned carbon nanotube films for functionally enhanced gas sensor applications Thin Solid Films517 6211–6

    [35] [35] Bekyarova E, Davis M, Burch T, Itkis M E, Zhao B,Sunshine S and Haddon R C 2004 Chemically functionalized single-walled carbon nanotubes as ammonia sensors J. Phys. Chem. B 108 19717–20

    [36] [36] Yin F F, Yue W J, Li Y, Gao S, Zhang C W, Kan H, Niu H S,Wang W X and Guo Y J 2021 Carbon-based nanomaterials for the detection of volatile organic compounds: a review Carbon 180 274–97

    [37] [37] Zou Q Q, Liu B and Zhang Y 2023 Design of an array structure for carbon-based field-effect-transistor type gas sensors to accurately identify trace gas species J. Mater.Chem. A 11 15811–20

    [38] [38] Zhao Q N, He Z Z, Jiang Y D, Yuan Z, Wu H R, Su C L and Tai H L 2019 Enhanced acetone-sensing properties of PEI thin film by GO-NH2 functional groups modification at room temperature Front. Mater. 5 82

    [39] [39] Nalage S R, Navale S T, Mane R S, Naushad M, Stadlar F J and Patil V B 2015 Preparation of camphor-sulfonic acid doped PPy–NiO hybrid nanocomposite for detection of toxic nitrogen dioxide Synth. Met. 209 426–33

    [40] [40] Liu X H, Zheng W, Kumar R, Kumar M and Zhang J 2022 Conducting polymer-based nanostructures for gas sensors Coord. Chem. Rev. 462 214517

    [41] [41] Fratoddi I, Venditti I, Cametti C and Russo M V 2015 Chemiresistive polyaniline-based gas sensors: a mini review Sens. Actuators B 220 534–48

    [42] [42] Chen X W, Wang S, Su C, Han Y T, Zou C, Zeng M, Hu N T,Su Y J, Zhou Z H and Yang Z 2020 Two-dimensional Cd-doped porous Co3O4 nanosheets for enhanced room-temperature NO2 sensing performance Sens.Actuators B 305 127393

    [43] [43] Duan Z H, Zhao Q N, Li C Z, Wang S, Jiang Y D, Zhang Y J,Liu B H and Tai H L 2021 Enhanced positive humidity sensitive behavior of p-reduced graphene oxide decorated with n-WS2 nanoparticles Rare Met. 40 1762–7

    [44] [44] Zheng W, Liu X H, Xie J Y, Lu G C and Zhang J 2021 Emerging van der Waals junctions based on TMDs materials for advanced gas sensors Coord. Chem. Rev.447 214151

    [45] [45] Meng H, Yang W, Ding K, Feng L and Guan Y 2015 Cu2O nanorods modified by reduced graphene oxide for NH3 sensing at room temperature J. Mater. Chem. A3 1174–81

    [46] [46] Li E, Cheng Z X, Xu J Q, Pan Q Y, Yu W J and Chu Y L 2009 Indium oxide with novel morphology: synthesis and application in C2H5OH gas sensing Cryst. Growth Des.9 2146–51

    [47] [47] Guo Y J et al 2013 Characterization and humidity sensing ofZnO/42? YX LiTaO3 Love wave devices with ZnO nanorods Mater. Res. Bull. 48 5058–63

    [48] [48] J L Z et al 2019 Advances in designs and mechanisms of semiconducting metal oxide nanostructures for high-precision gas sensors operated at room temperature Mater. Horiz. 6 470–506

    [49] [49] J L D et al 2019 High humidity enhanced surface acoustic wave (SAW) H2S sensors based on sol–gel CuO films Sens. Actuators B 294 55–61

    [50] [50] Li Z J, Huang Y W, Zhang S C, Chen W M, Kuang Z,Ao D Y, Liu W and Fu Y Q 2015 A fast response & recovery H2S gas sensor based on α-Fe2O3 nanoparticles with ppb level detection limit J. Hazard. Mater.300 167–74

    [51] [51] Li Z J, Lin Z J, Wang N N, Huang Y W, Wang J Q, Liu W,Fu Y Q and Wang Z G 2016 Facile synthesis of α-Fe2O3 micro-ellipsoids by surfactant-free hydrothermal method for sub-ppm level H2S detection Mater. Des. 110 532–9

    [52] [52] Xu Y S, Ma T T, Zhao Y Q, Zheng L L, Liu X H and Zhang J 2019 Multi-metal functionalized tungsten oxide nanowires enabling ultra-sensitive detection of triethylamine Sens.Actuators B 300 127042

    [53] [53] Su P G, Shiu W L and Tsai M S 2015 Flexible humidity sensor based on Au nanoparticles/graphene oxide/thiolated silica sol–gel film Sens. Actuators B 216 467–75

    [54] [54] Liu C, Kuang Q, Xie Z X and Zheng L S 2015 The effect of noble metal (Au, Pd and Pt) nanoparticles on the gas sensing performance of SnO2-based sensors: a case study on the {221} high-index faceted SnO2 octahedra CrystEngComm 17 6308–13

    [55] [55] Mohammad Yusof N, Ibrahim S and Rozali S 2022 Advances on graphene-based gas sensors for acetone detection based on its physical and chemical attributes J. Mater. Res.37 405–23

    [56] [56] Li Q F, Chen W L, Liu W H, Sun M L, Xu M H, Peng H L,Wu H Y, Song S X, Li T H and Tang X H 2022 Highly sensitive graphene ammonia sensor enhanced by concentrated nitric acid treatment Appl. Surf. Sci.586 152689

    [57] [57] Kwon B et al 2022 Ultrasensitive N-channel graphene gas sensors by nondestructive molecular doping ACS Nano16 2176–87

    [58] [58] Hizam S M M, Al-Dhahebi A M and Mohamed Saheed M S 2022 Recent advances in graphene-based nanocomposites for ammonia detection Polymers 14 5125

    [59] [59] Ao D, Li Z J, Fu Y Q, Tang Y L, Yan S N and Zu X T 2019 Heterostructured NiO/ZnO nanorod arrays with significantly enhanced H2S sensing performance Nanomaterials 9 900

    [60] [60] Liu B Q, Zhu Q, Pan Y H, Huang F T, Tang L Y, Liu C,Cheng Z, Wang P, Ma J and Ding M N 2022 Single-atom tailoring of two-dimensional atomic crystals enables highly efficient detection and pattern recognition of chemical vapors ACS Sens. 7 1533–43

    [61] [61] Liu X H, Ma T T, Pinna N and Zhang J 2017 Two-dimensional nanostructured materials for gas sensing Adv. Funct. Mater. 27 1702168

    [62] [62] Cho B et al 2015 Charge-transfer-based gas sensing using atomic-layer MoS2 Sci. Rep. 5 8052

    [63] [63] Hashtroudi H, Mackinnon I D R and Shafiei M 2020 Emerging 2D hybrid nanomaterials: towards enhanced sensitive and selective conductometric gas sensors at room temperature J. Mater. Chem. C 8 13108–26

    [64] [64] Lei G L, Pan H Y, Mei H S, Liu X H, Lu G C, Lou C M,Li Z S and Zhang J 2022 Emerging single atom catalysts in gas sensors Chem. Soc. Rev. 51 7260–80

    [65] [65] Chu T S, Rong C, Zhou L, Mao X Y, Zhang B W and Xuan F Z 2023 Progress and perspectives of single-atom catalysts for gas sensing Adv. Mater. 35 2206783

    [66] [66] Wei X Q et al 2021 Synergistically enhanced single-atomic site Fe by Fe3C@C for boosted oxygen reduction in neutral electrolyte Nano Energy 84 105840

    [67] [67] Wei X Q, Luo X, Wu N N, Gu W L, Lin Y H and Zhu C Z 2021 Recent advances in synergistically enhanced single-atomic site catalysts for boosted oxygen reduction reaction Nano Energy 84 105817

    [68] [68] Yan H, Su C L, He J and Chen W 2018 Single-atom catalysts and their applications in organic chemistry J. Mater.Chem. A 6 8793–814

    [69] [69] Li W X, Guo Z H, Yang J, Li Y, Sun X L, He H Y, Li S A and Zhang J J 2022 Advanced strategies for stabilizing single-atom catalysts for energy storage and conversion Electrochem. Energy Rev. 5 9

    [70] [70] Zhang T J, Walsh A G, Yu J H and Zhang P 2021 Single-atom alloy catalysts: structural analysis, electronic properties and catalytic activities Chem. Soc. Rev. 50 569–88

    [71] [71] Chen Y J, Ji S F, Chen C, Peng Q, Wang D S and Li Y D 2018 Single-atom catalysts: synthetic strategies and electrochemical applications Joule 2 1242–64

    [72] [72] Li W H, Yang J R, Wang D S and Li Y D 2022 Striding the threshold of an atom era of organic synthesis by single-atom catalysis Chem 8 119–40

    [73] [73] Wei X Q et al 2023 Tuning the spin state of Fe single atoms by Pd nanoclusters enables robust oxygen reduction with dissociative pathway Chem 9 181–97

    [74] [74] Zhang X X, Sun J H, Tang K S, Wang H R, Chen T T,Jiang K S, Zhou T Y, Quan H and Guo R H 2022 Ultralow detection limit and ultrafast response/recovery of the H2 gas sensor based on Pd-doped rGO/ZnO-SnO2 from hydrothermal synthesis Microsyst. Nanoeng. 8 67

    [75] [75] Zhou M, Jiang Y, Wang G, Wu W J, Chen W X, Yu P,Lin Y Q, Mao J J and Mao L Q 2020 Single-atom Ni-N4 provides a robust cellular NO sensor Nat. Commun.11 3188

    [76] [76] Shin H et al 2020 Single-atom Pt stabilized on one-dimensional nanostructure support via carbon nitride/SnO2 heterojunction trapping ACS Nano14 11394–405

    [77] [77] Wang L B et al 2016 Atomic-level insights in optimizing reaction paths for hydroformylation reaction over Rh/CoO single-atom catalyst Nat. Commun. 7 14036

    [78] [78] Ou L X, Liu M Y, Zhu L Y, Zhang D W and Lu H L 2022 Recent progress on flexible room-temperature gas sensors based on metal oxide semiconductor Nano-Micro Lett.14 206

    [79] [79] Gu F B, Cui Y Z, Han D M, Hong S,Flytzani-Stephanopoulos M and Wang Z H 2019 Atomically dispersed Pt (II) on WO3 for highly selective sensing and catalytic oxidation of triethylamine Appl.Catal. B 256 117809

    [80] [80] Liu B, Zhang L J, Luo Y Y, Gao L and Duan G T 2021 The dehydrogenation of H-S bond into sulfur species on supported pd single atoms allows highly selective and sensitive hydrogen sulfide detection Small 17 2105643

    [81] [81] Chen Y J et al 2020 Engineering the atomic interface with single platinum atoms for enhanced photocatalytic hydrogen production Angew. Chem., Int. Ed.59 1295–301

    [82] [82] Li L, Su H Y, Zhou L C, Hu Z X, Li T K, Chen B B, Li H Y and Liu H 2023 Single-atom Ce targeted regulation SnS/SnS2 heterojunction for sensitive and stable room-temperature ppb-level gas sensor Biochem. Eng. J.472 144796

    [83] [83] Cheng M, Yang L, Li H Y, Bai W, Xiao C and Xie Y 2021 Constructing charge transfer channel between dopants and oxygen vacancies for enhanced visible-light-driven water oxidation Nano Res. 14 3365–71

    [84] [84] Xue Z G et al 2021 Tailoring unsymmetrical-coordinated atomic site in oxide-supported Pt catalysts for enhanced surface activity and stability Small 17 2101008

    [85] [85] Zhao Y F et al 2021 Simultaneous oxidative and reductive reactions in one system by atomic design Nat. Catal.4 134–43

    [86] [86] Peng Y, Lu B Z and Chen S W 2018 Carbon-supported single atom catalysts for electrochemical energy conversion and storage Adv. Mater. 30 1801995

    [87] [87] Wang N, Sun Q M, Zhang T J, Mayoral A, Li L, Zhou X,Xu J, Zhang P and Yu J H 2021 Impregnating subnanometer metallic nanocatalysts into self-pillared zeolite nanosheets J. Am. Chem. Soc. 143 6905–14

    [88] [88] Jiao L and Jiang H L 2019 Metal-organic-framework-based single-atom catalysts for energy applications Chem5 786–804

    [89] [89] Zhang R F, Deng Z, Shi L, Kumar M, Chang J Q, Wang S M,Fang X D, Tong W and Meng G 2022 Pt-anchored CuCrO2 for low-temperature-operating high-performance H2S chemiresistors ACS Appl. Mater. Interfaces14 24536–45

    [90] [90] Xue Z G et al 2020 One-dimensional segregated single Au sites on step-rich ZnO ladder for ultrasensitive NO2sensors Chem 6 3364–73

    [91] [91] Liu J Y 2017 Catalysis by supported single metal atoms ACS Catal. 7 34–59

    [92] [92] Fonseca J and Lu J L 2021 Single-atom catalysts designed and prepared by the atomic layer deposition technique ACS Catal. 11 7018–59

    [93] [93] Zhang P, Xiao Y, Zhang J J, Liu B J, Ma X F and Wang Y 2021 Highly sensitive gas sensing platforms based on field effect transistor—a review Anal. Chim. Acta 1172 338575

    [94] [94] Eranna G, Joshi B C, Runthala D P and Gupta R P 2004 Oxide materials for development of integrated gas sensors—a comprehensive review Crit. Rev. Solid State Mater. Sci. 29 111–88

    [95] [95] Yuan Z, Bariya M, Fahad H M, Wu J B, Han R, Gupta N and Javey A 2020 Trace-level, multi-gas detection for food quality assessment based on decorated silicon transistor arrays Adv. Mater. 32 1908385

    [96] [96] Fahad H M et al 2017 Room temperature multiplexed gas sensing using chemical-sensitive 3.5-nm-thin silicon transistors Sci. Adv. 3 e1602557

    [97] [97] Hu P A, Zhang J, Li L, Wang Z L, O’Neill W and Estrela P 2010 Carbon nanostructure-based field-effect transistors for label-free chemical/biological sensors Sensors10 5133–59

    [98] [98] Janata J and Josowicz M 2003 Conducting polymers in electronic chemical sensors Nat. Mater. 2 19–24

    [99] [99] Barsan N and Weimar U 2001 Conduction model of metal oxide gas sensors J. Electroceram. 7 143–67

    [100] [100] Lundstr?m I, Sundgren H, Winquist F, Eriksson M,Krantz-Rülcker C and Lloydspetz A 2007 Twenty-five years of field effect gas sensor research in Link?ping Sens.Actuators B 121 247–62

    [101] [101] Eisele I, Doll T and Burgmair M 2001 Low power gas detection with FET sensors Sens. Actuators B 78 19–25

    [102] [102] Li Z and Yi J X 2020 Drastically enhanced ammonia sensing of Pt/ZnO ordered porous ultra-thin films Sens. Actuators B 317 128217

    [103] [103] Tian R B, Ji P, Luo Z C, Li J M and Sun J H 2021 Room-temperature NH3 gas sensor based on atomically dispersed Co with a simple structure New J. Chem.45 10240–7

    [104] [104] Bhati V S, Kumar M and Banerjee R 2021 Gas sensing performance of 2D nanomaterials/metal oxide nanocomposites: a review J. Mater. Chem. C 9 8776–808

    [105] [105] Majhi S M, Mirzaei A, Kim H W and Kim S S 2021 Reduced graphene oxide (rGO)-loaded metal-oxide nanofiber gas sensors: an overview Sensors 21 1352

    [106] [106] Gai L Y, Lai R P, Dong X H, Wu X, Luan Q T, Wang J,Lin H F, Ding W H, Wu G L and Xie W F 2022 Recent advances in ethanol gas sensors based on metal oxide semiconductor heterojunctions Rare Met. 41 1818–42

    [107] [107] Liu L Y, Zhou P, Su X Z, Liu Y H, Sun Y H, Yang H B,Fu H Y, Qu X L, Liu S T and Zheng S R 2022 Synergistic Ni single atoms and oxygen vacancies on SnO2 nanorods toward promoting SO2 gas sensing Sens. Actuators B351 130983

    [108] [108] Xiao H M, Hou Y C, Guo Y R and Pan Q J 2023 The coupling of graphene, graphitic carbon nitride and cellulose to fabricate zinc oxide-based sensors and their enhanced activity towards air pollutant nitrogen dioxide Chemosphere 324 138325

    [109] [109] Tsymbalenko O, Lee S, Lee Y M, Nam Y S, Kim B C,Kim J Y and Lee K B 2023 High-sensitivity NH3 gas sensor using pristine graphene doped with CuO nanoparticles Microchim. Acta 190 134

    [110] [110] Chang S L, Yang M Y, Pang R, Ye L, Wang X C, Cao A Y and Shang Y Y 2022 Intrinsically flexible CNT-TiO2-interlaced film for NO sensing at room temperature Appl. Surf. Sci. 579 152172

    [111] [111] Vu T D, Cong T N, Huu B L, Duc C N and Huu L N 2019 Surface-modified carbon nanotubes for enhanced ammonia gas sensitivity at room temperature J. Nanosci.Nanotechnol. 19 7447–51

    [112] [112] Du Z F, Li C C, Li L M, Yu H C, Wang Y G and Wang T H 2011 Ammonia gas detection based on polyaniline nanofibers coated on interdigitated array electrodes J.Mater. Sci., Mater. Electron. 22 418–21

    [113] [113] Wu Z Q, Chen X D, Zhu S B, Zhou Z W, Yao Y, Quan W and Liu B 2013 Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite Sens. Actuators B178 485–93

    [114] [114] Wojkiewicz J L, Bliznyuk V N, Carquigny S, Elkamchi N,Redon N, Lasri T, Pud A A and Reynaud S 2011 Nanostructured polyaniline-based composites for ppb range ammonia sensing Sens. Actuators B160 1394–403

    [115] [115] Pham T, Li G H, Bekyarova E, Itkis M E and Mulchandani A 2019 MoS2-based optoelectronic gas sensor with sub-parts-per-billion limit of NO2 gas detection ACS Nano13 3196–205

    [116] [116] Friedman A L, Keith Perkins F, Cobas E, Jernigan G G,Campbell P M, Hanbicki A T and Jonker B T 2014 Chemical vapor sensing of two-dimensional MoS2 field effect transistor devices Solid-State Electron. 101 2–7

    [117] [117] Ma S Q 2015 Gas sensitivity of Cr doped BN sheets Appl.Mech. Mater. 799–800 166–70

    [118] [118] Heller I, Janssens A M, M?nnik J, Minot E D, Lemay S G and Dekker C 2008 Identifying the mechanism of biosensing with carbon nanotube transistors Nano Lett. 8 591–5

    [119] [119] Chen T Y, Chen H I, Hsu C S, Huang C C, Chang C F,Chou P C and Liu W C 2012 On an ammonia gas sensor based on a Pt/AlGaN heterostructure field-effect transistor IEEE Electron Device Lett. 33 612–4

    [120] [120] Qin R X, Liu P X, Fu G and Zheng N F 2018 Strategies for stabilizing atomically dispersed metal catalysts Small Methods 2 1700286

    [121] [121] He G C, Yan M M, Gong H S, Fei H L and Wang S Y 2022 Ultrafast synthetic strategies under extreme heating conditions toward single-atom catalysts Int. J. Extrem.Manuf. 4 032003

    [122] [122] Kaiser S K, Fako E, Manzocchi G, Krumeich F, Hauert R,Clark A H, Safonova O V, López N and Pérez-Ramírez J 2020 Nanostructuring unlocks high performance of platinum single-atom catalysts for stable vinyl chloride production Nat. Catal. 3 376–85

    [123] [123] Kwon Y, Kim T Y, Kwon G, Yi J and Lee H 2017 Selective activation of methane on single-atom catalyst of rhodium dispersed on zirconia for direct conversion J. Am. Chem.Soc. 139 17694–9

    [124] [124] Hai X et al 2022 Scalable two-step annealing method for preparing ultra-high-density single-atom catalyst libraries Nat. Nanotechnol. 17 174–81

    [125] [125] Zhang Z Q et al 2019 The simplest construction of single-site catalysts by the synergism of micropore trapping and nitrogen anchoring Nat. Commun. 10 1657

    [126] [126] Yang L, Shi L, Wang D, Lv Y L and Cao D P 2018 Single-atom cobalt electrocatalysts for foldable solid-state Zn-air battery Nano Energy 50 691–8

    [127] [127] Sa Y J et al 2016 A general approach to preferential formation of active Fe-Nx sites in Fe-N/C electrocatalysts for efficient oxygen reduction reaction J. Am. Chem. Soc.138 15046–56

    [128] [128] Zhao S Y et al 2018 One-pot pyrolysis method to fabricate carbon nanotube supported Ni single-atom catalysts with ultrahigh loading ACS Appl. Energy Mater. 1 5286–97

    [129] [129] Cheng Y et al 2019 Iron single atoms on graphene as nonprecious metal catalysts for high-temperature polymer electrolyte membrane fuel cells Adv. Sci. 6 1802066

    [130] [130] Jiang C J, Shang Z Y and Liang X H 2015 Chemoselective transfer hydrogenation of nitroarenes catalyzed by highly dispersed, supported nickel nanoparticles ACS Catal.5 4814–8

    [131] [131] Cheng N C and Sun X L 2017 Single atom catalyst by atomic layer deposition technique Chin. J. Catal. 38 1508–14

    [132] [132] Yan H, Cheng H, Yi H, Lin Y, Yao T, Wang C L, Li J J,Wei S Q and Lu J L 2015 Single-atom Pd1/graphene catalyst achieved by atomic layer deposition: remarkable performance in selective hydrogenation of 1, 3-butadiene J. Am. Chem. Soc. 137 10484–7

    [133] [133] Shin H, Ko J, Park C, Kim D H, Ahn J, Jang J S, Kim Y H,Cho S H, Baik H and Kim I D 2022 Sacrificial template-assisted synthesis of inorganic nanosheets with high-loading single-atom catalysts: a general approach Adv. Funct. Mater. 32 2110485

    [134] [134] Qiao S M, Wang Q, Zhang Q, Huang C H, He G H and Zhang F X 2022 Sacrificial template method to synthesize atomically dispersed Mn atoms on S, N-codoped carbon as a separator modifier for advanced Li–S batteries ACS Appl. Mater. Interfaces 14 42123–33

    [135] [135] Sun Q M, Wang N, Zhang T J, Bai R S, Mayoral A, Zhang P,Zhang Q H, Terasaki O and Yu J H 2019 Zeolite-encaged single-atom rhodium catalysts: highly-efficient hydrogen generation and shape-selective tandem hydrogenation of nitroarenes Angew. Chem., Int. Ed. 58 18570–6

    [136] [136] Szilágyi P ′A, Rogers D M, Zaiser I, Callini E, Turner S,Borgschulte A, Züttel A, Geerlings H, Hirscher M and Dam B 2017 Functionalised metal–organic frameworks: a novel approach to stabilising single metal atoms J. Mater.Chem. A 5 15559–66

    [137] [137] Liu S S, Tan J M, Gulec A, Crosby L A, Drake T L,Schweitzer N M, Delferro M, Marks L D, Marks T J and Stair P C 2017 Stabilizing single-atom and small-domain platinum via combining organometallic chemisorption and atomic layer deposition Organometallics 36 818–28

    [138] [138] Sun G D et al 2018 Breaking the scaling relationship via thermally stable Pt/Cu single atom alloys for catalytic dehydrogenation Nat. Commun. 9 4454

    [139] [139] Hu L Z, Wang T, Nie Q Q, Liu J Y, Cui Y P, Zhang K F,Tan Z C and Yu H S 2022 Single Pd atoms anchored graphitic carbon nitride for highly selective and stable photocatalysis of nitric oxide Carbon 200 187–98

    [140] [140] Hu D, Wang L, Wang F and Wang J D 2018 Bimetallic Au-Li/SAC catalysts for acetylene hydrochlorination Catal. Commun. 115 45–48

    [141] [141] Sarma B B, Jelic J, Neukum D, Doronkin D E, Huang X H,Studt F and Grunwaldt J D 2023 Tracking and understanding dynamics of atoms and clusters of late transition metals with in-situ DRIFT and XAS spectroscopy assisted by DFT J. Phys. Chem. C127 3032–46

    [142] [142] Yang J Y et al 2022 Modulating the strong metal-support interaction of single-atom catalysts via vicinal structure decoration Nat. Commun. 13 4244

    [143] [143] Zhang Y Q, Yang J, Ge R Y, Zhang J J, Cairney J M, Li Y,Zhu M Y, Li S A and Li W X 2022 The effect of coordination environment on the activity and selectivity of single-atom catalysts Coord. Chem. Rev. 461 214493

    [144] [144] Chen J Y et al 2018 Surface engineering protocol to obtain an atomically dispersed Pt/CeO2 catalyst with high activity and stability for CO oxidation ACS Sustain. Chem.Eng. 6 14054–62

    [145] [145] Sietsma J R A, van Dillen A J, de Jongh P E and de Jong K P 2006 Application of ordered mesoporous materials as model supports to study catalyst preparation by impregnation and drying Stud. Surf. Sci. Catal.162 95–102

    [146] [146] Wang L Q, Huang L, Liang F, Liu S M, Wang Y H and Zhang H J 2017 Preparation, characterization and catalytic performance of single-atom catalysts Chin. J. Catal.38 1528–39

    [147] [147] Ding J, Fan M H, Zhong Q and Russell A G 2018 Single-atom silver-manganese nanocatalysts based on atom-economy design for reaction temperature-controlled selective hydrogenation of bioresources-derivable diethyl oxalate to ethyl glycolate and acetaldehyde diethyl acetal Appl. Catal. B 232 348–54

    [148] [148] Liu Q and Zhang Z L 2019 Platinum single-atom catalysts: a comparative review towards effective characterization Catal. Sci. Technol. 9 4821–34

    [149] [149] Sun L, Cao L R, Su Y, Wang C J, Lin J and Wang X D 2022 Ru1/FeOx single-atom catalyst with dual active sites for water gas shift reaction without methanation Appl. Catal.B 318 121841

    [150] [150] Millet M-M et al 2019 Ni single atom catalysts for CO2 activation J. Am. Chem. Soc. 141 2451–61

    [151] [151] Zhu Y F, Kong X, Yin J Q, You R, Zhang B, Zheng H Y, Wen X D, Zhu Y L and Li Y W 2017 Covalent-bonding to irreducible SiO2 leads to high-loading and atomically dispersed metal catalysts J. Catal. 353 315–24

    [152] [152] Wang Y, Chen L H, Mao Z X, Peng L S, Xiang R, Tang X Y,Deng J H, Wei Z D and Liao Q 2019 Controlled synthesis of single cobalt atom catalysts via a facile one-pot pyrolysis for efficient oxygen reduction and hydrogen evolution reactions Sci. Bull. 64 1095–102

    [153] [153] Qi Y F, Li J, Zhang Y Q, Cao Q, Si Y M, Wu Z R, Akram M and Xu X 2021 Novel lignin-based single atom catalysts as peroxymonosulfate activator for pollutants degradation: role of single cobalt and electron transfer pathway Appl.Catal. B 286 119910

    [154] [154] Li J X, Chai G D and Wang X W 2023 Atomic layer deposition of thin films: from a chemistry perspective Int.J. Extrem. Manuf. 5 032003

    [155] [155] George S M 2010 Atomic layer deposition: an overview Chem. Rev. 110 111–31

    [156] [156] Kaden W E, Wu T P, Kunkel W A and Anderson S L 2009 Electronic structure controls reactivity of size-selected Pd clusters adsorbed on TiO2 surfaces Science 326 826–9

    [157] [157] Swain S, Altaee A, Saxena M and Samal A K 2022 A comprehensive study on heterogeneous single atom catalysis: current progress, and challenges Coord. Chem.Rev. 470 214710

    [158] [158] Liu X, Su Y and Chen R 2023 Atomic-scale engineering of advanced catalytic and energy materials via atomic layer deposition for eco-friendly vehicles Int. J. Extrem. Manuf.5 022005

    [159] [159] Pan H Y, Zhou L H, Zheng W, Liu X H, Zhang J and Pinna N 2023 Atomic layer deposition to heterostructures for application in gas sensors Int. J. Extrem. Manuf.5 022008

    [160] [160] Oviroh P O, Akbarzadeh R, Pan D Q, Coetzee R A M andJen T C 2019 New development of atomic layer deposition: processes, methods and applications Sci. Technol. Adv. Mater. 20 465–96

    [161] [161] Cheng N C, Shao Y Y, Liu J and Sun X L 2016 Electrocatalysts by atomic layer deposition for fuel cell applications Nano Energy 29 220–42

    [162] [162] Cheng N C et al 2016 Platinum single-atom and cluster catalysis of the hydrogen evolution reaction Nat. Commun.7 13638

    [163] [163] Sun S H et al 2013 Single-atom catalysis using Pt/graphene achieved through atomic layer deposition Sci. Rep. 3 1775

    [164] [164] Song Z X et al 2020 Engineering the low coordinated Pt single atom to achieve the superior electrocatalytic performance toward oxygen reduction Small 16 2003096

    [165] [165] Shi X X et al 2020 Copper catalysts in semihydrogenation of acetylene: from single atoms to nanoparticles ACS Catal.10 3495–504

    [166] [166] Yin P Q et al 2016 Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts Angew. Chem., Int. Ed. 55 10800–5

    [167] [167] Chen Y J et al 2017 Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction Angew. Chem., Int. Ed.56 6937–41

    [168] [168] Guo S L, Zhao Y K, Wang C X, Jiang H Q and Cheng G J2020 A single-atomic noble metal enclosed defective MOF via cryogenic UV photoreduction for CO oxidation with ultrahigh efficiency and stability ACS Appl. Mater.Interfaces 12 26068–75

    [169] [169] Jiao L, Wan G, Zhang R, Zhou H, Yu S H and Jiang H L 2018 From metal-organic frameworks to single-atom fe implanted N-doped porous carbons: efficient oxygen reduction in both alkaline and acidic media Angew. Chem.,Int. Ed. 57 8525–9

    [170] [170] Liu Q et al 2022 Presentation of gas-phase-reactant-accessible single-rhodium-atom catalysts for CO oxidation, via MOF confinement of an Anderson polyoxometalate J. Mater. Chem. A10 18226–34

    [171] [171] Wu N N et al 2022 Atomically dispersed Ru3 site catalysts for electrochemical sensing of small molecules Biosens. Bioelectron. 216 114609

    [172] [172] Yang S T, Liu X L, Niu F Q, Wang L Y, Su K K, Liu W F,Dong H Y, Yue H Y and Yin Y H 2022 2D single-atom Fe–N–C catalyst derived from a layered complex as an oxygen reduction catalyst for PEMFCs ACS Appl. Energy Mater. 5 8791–9

    [173] [173] Yuan C Z, Zhan L Y, Liu S J, Chen F, Lin H J, Wu X L and Chen J R 2020 Semi-sacrificial template synthesis of single-atom Ni sites supported on hollow carbon nanospheres for efficient and stable electrochemical CO2 reduction Inorg. Chem. Front. 7 1719–25

    [174] [174] Hou Y, Liang Y L, Shi P C, Huang Y B and Cao R 2020 Atomically dispersed Ni species on N-doped carbon nanotubes for electroreduction of CO2 with nearly 100%CO selectivity Appl. Catal. B 271 118929

    [175] [175] Zhang L K et al 2020 Atomically dispersed Co catalyst for efficient hydrodeoxygenation of lignin-derived species and hydrogenation of nitroaromatics ACS Catal. 10 8672–82

    [176] [176] Qiu L M, Shen S W, Ma C, Lv C M, Guo X, Jiang H L, Liu Z,Qiao W M, Ling L C and Wang J T 2022 Controllable fabrication of atomic dispersed low-coordination nickel-nitrogen sites for highly efficient electrocatalytic CO2 reduction Biochem. Eng. J. 440 135956

    [177] [177] Li X et al 2022 Functional CeOx nanoglues for robust atomically dispersed catalysts Nature 611 284–8

    [178] [178] Han G-F et al 2022 Abrading bulk metal into single atoms Nat. Nanotechnol. 17 403–7

    [179] [179] Lang R et al 2019 Non defect-stabilized thermally stable single-atom catalyst Nat. Commun. 10 234

    [180] [180] Nakate U T, Bulakhe R N, Lokhande C D and Kale S N 2016 Au sensitized ZnO nanorods for enhanced liquefied petroleum gas sensing properties Appl. Surf. Sci.371 224–30

    [181] [181] Rong Q, Xiao B, Zeng J Y, Yu R H, Zi B Y, Zhang G L,Zhu Z Q, Zhang J, Wu J S and Liu Q J 2022 Pt single atom-induced activation energy and adsorption enhancement for an ultrasensitive ppb-level methanol gas sensor ACS Sens. 7 199–206

    [182] [182] Zong B Y, Xu Q K and Mao S 2022 Single-atom Pt-functionalized Ti3C2Tx field-effect transistor for volatile organic compound gas detection ACS Sens.7 1874–82

    [183] [183] Cong W H, Song P, Zhang Y, Yang S, Liu W F, Zhang T Y,Zhou J D, Wang M L and Liu X G 2022 Supramolecular confinement pyrolysis to carbon-supported Mo nanostructures spanning four scales for hydroquinone determination J. Hazard. Mater. 437 129327

    [184] [184] Xu Y S, Zheng W, Liu X H, Zhang L Q, Zheng L L, Yang C, Pinna N and Zhang J 2020 Platinum single atoms on tin oxide ultrathin films for extremely sensitive gas detection Mater. Horiz. 7 1519–27

    [185] [185] Ma J H, Ren Y, Zhou X R, Liu L L, Zhu Y H, Cheng X W,Xu P C, Li X X, Deng Y H and Zhao D Y 2018 Pt nanoparticles sensitized ordered mesoporous WO3 semiconductor: gas sensing performance and mechanism study Adv. Funct. Mater. 28 1705268

    [186] [186] Niu W J, He J Z, Gu B N, Liu M C and Chueh Y L 2021 Opportunities and challenges in precise synthesis of transition metal single-atom supported by 2D materials as catalysts toward oxygen reduction reaction Adv. Funct.Mater. 31 2103558

    [187] [187] Akri M et al 2019 Atomically dispersed nickel as coke-resistant active sites for methane dry reforming Nat.Commun. 10 5181

    [188] [188] Zhang J, Hu P A, Zhang R F, Wang X N, Yang B, Cao W W,Li Y B, He X D, Wang Z L and O’Neill W 2012 Soft-lithographic processed soluble micropatterns of reduced graphene oxide for wafer-scale thin film transistors and gas sensors J. Mater. Chem. 22 714–8

    [189] [189] Trabelsi A B, Alkallas F H, Manthrammel M A, Shkir M and AlFaify S 2022 Improvement in ammonia gas sensing properties of Co doped MoO3 thin films prepared by cost effective nebulizer spray pyrolysis method Results Phys.43 106036

    [190] [190] Sharma B and Myung J 2019 Pd-based ternary alloys used for gas sensing applications: a review Int. J. Hydrog. Energy 44 30499–510

    [191] [191] Li Z J, Yan S N, Wu Z L, Li H, Wang J Q, Shen W Z, Wang Z G and Fu Y Q 2018 Hydrogen gas sensor based on mesoporous In2O3 with fast response/recovery and ppb level detection limit Int. J. Hydrog. Energy 43 22746–55

    [192] [192] Xue Z G, Wang C, Tong Y J, Yan M Y, Zhang J W, Han X,Hong X, Li Y F and Wu Y E 2022 Strain-assisted single Pt sites on high-curvature MoS2 surface for ultrasensitive H2S sensing CCS Chem. 4 3842–51

    [193] [193] Guarnieri M and Balmes J R 2014 Outdoor air pollution and asthma Lancet 383 1581–92

    [194] [194] Geng X et al 2021 Atomically dispersed Pb ionic sites in PbCdSe quantum dot gels enhance room-temperature NO2 sensing Nat. Commun. 12 4895

    [195] [195] Wang C Y, Xie J Y, Chang X, Zheng W, Zhang J and Liu X H 2023 ZnO single nanowire gas sensor: a platform to investigate the sensitization of Pt Biochem. Eng. J.473 145481

    [196] [196] Chen W M, Li P P, Yu J, Cui P X, Yu X H, Song W G and Cao C Y 2022 In-situ doping nickel single atoms in two-dimensional MXenes analogue support for room temperature NO2 sensing Nano Res. 15 9544–53

    [197] [197] Wang H, Luo Y Y, Li K, Liu B, Gao L and Duan G T 2022Porous α-Fe2O3 gas sensor with instantaneous attenuated response toward triethylamine and its reaction kinetics Biochem. Eng. J. 427 131631

    [198] [198] Li D K, Li Y W, Wang X H, Sun G, Cao J L and Wang Y 2022 Improved TEA sensitivity and selectivity of In2O3 porous nanospheres by modification with Ag nanoparticles Nanomaterials 12 1532

    [199] [199] Peng R Q, Li Y Y, Liu T, Si P C, Feng J K, Suhr J and Ci L 2020 Boron-doped graphene coated Au@SnO2 for high-performance triethylamine gas detection Mater.Chem. Phys. 239 121961

    [200] [200] Ju D X, Xu H Y, Xu Q, Gong H B, Qiu Z W, Guo J, Zhang J and Cao B Q 2015 High triethylamine-sensing properties of NiO/SnO2 hollow sphere P-N heterojunction sensors Sens. Actuators B 215 39–44

    [201] [201] Zeng Z J et al 2021 Single-atom silver loaded on tungsten oxide with oxygen vacancies for high performance triethylamine gas sensors J. Mater. Chem. A9 8704–10

    [202] [202] Sun L, Wang B and Wang Y 2020 High-temperature gas sensor based on novel Pt single atoms@SnO2 nanorods@SiC nanosheets multi-heterojunctions ACS Appl. Mater. Interfaces 12 21808–17

    [203] [203] Li Q H et al 2021 Porous γ-Fe2O3 nanoparticle decorated with atomically dispersed platinum: study on atomic site structural change and gas sensor activity evolution Nano Res. 14 1435–42

    [204] [204] Yang Z, Cao W, Peng C, Wang T, Li B, Ma H, Su Y, Zhou Z,Yang J and Zeng M 2021 Construction, application and verification of a novel formaldehyde gas sensor system based on Ni-doped SnO2 nanoparticles IEEE Sens. J.21 11023–30

    [205] [205] Lou C M, Lei G L, Liu X H, Xie J Y, Li Z S, Zheng W,Goel N, Kumar M and Zhang J 2022 Design and optimization strategies of metal oxide semiconductor nanostructures for advanced formaldehyde sensors Coord.Chem. Rev. 452 214280

    [206] [206] Gu F G, Di M Y, Han D M, Hong S and Wang Z H 2020 Atomically dispersed Au on In2O3 nanosheets for highly sensitive and selective detection of formaldehyde ACS Sens. 5 2611–9

    [207] [207] Zhou L H, Chang X, Zheng W, Liu X H and Zhang J 2023 Single atom Rh-sensitized SnO2 via atomic layer deposition for efficient formaldehyde detection Biochem.Eng. J. 475 146300

    [208] [208] Qiu J W, Hu X F, Shi L, Fan J L, Min X J, Zhang W and Wang J L 2021 Enabling selective, room-temperature gas detection using atomically dispersed Zn Sens. Actuators B329 129221

    [209] [209] McCoy D E, Feo T, Harvey T A and Prum R O 2018 Structural absorption by barbule microstructures of super black bird of paradise feathers Nat. Commun. 9 1

    [210] [210] Duchesne P N et al 2018 Golden single-atomic-site platinum electrocatalysts Nat. Mater. 17 1033–9

    [211] [211] Yao Y C et al 2019 Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis Nat. Catal. 2 304–13

    [212] [212] Duan K, Li W, Zhu C, Li J Z, Xu J and Wang X F 2022 Promoting sensitivity and selectivity of NO2 gas sensor based on (P, N)-doped single-layer WSe2: a first principles study Results Phys. 34 105296

    [213] [213] Xu Z W, Shi Z Z, Wang M Y, Song R F, Zhang X Z, Liu G W and Qiao G J 2021 Gas sensing properties of defective tellurene on the nitrogen oxides: a first-principles study Sens Actuators A 328 112766

    [214] [214] Mu L, Chen D C and Cui H 2022 Single Pd atom embedded Janus HfSeTe as promising sensor for dissolved gas detection in transformer oil: a density functional theory study Surf. Interfaces 35 102398

    [215] [215] Catto A C, da Silva L F, Bernardi M I B, Bernardini S,Aguir K, Longo E and Mastelaro V R 2016 Local structure and surface properties of CoxZn1-xO thin films for ozone gas sensing ACS Appl. Mater. Interfaces 8 26066–72

    [216] [216] Koga K 2020 Electronic and catalytic effects of single-atom Pd additives on the hydrogen sensing properties of Co3O4 nanoparticle films ACS Appl. Mater. Interfaces 12 20806–23

    [217] [217] Ye X L, Lin S J, Zhang J W, Jiang H J, Cao L A, Wen Y Y,Yao M S, Li W H, Wang G E and Xu G 2021 Boosting room temperature sensing performances by atomically dispersed pd stabilized via surface coordination ACS Sens.6 1103–10

    [218] [218] Li D K, Li Y W, Wang X H, Sun G, Cao J L and Wang Y 2023 Surface modification of In2O3 porous nanospheres with Au single atoms for ultrafast and highly sensitive detection of CO Appl. Surf. Sci. 613 155987

    [219] [219] Zhou W, Tan Y, Ma J, Wang X, Yang L, Li Z, Liu C C, Wu H,Sun L and Deng W Q 2022 Ultrasensitive NO sensor based on a nickel single-atom electrocatalyst for preliminary screening of COVID-19 ACS Sens. 7 3422–9

    [220] [220] Niu F, Shao Z W, Gao H, Tao L M and Ding Y 2021 Si-doped graphene nanosheets for NOx gas sensing Sens.Actuators B 328 129005

    [221] [221] Zhang J, Zhao C, Hu P A, Fu Y Q, Wang Z L, Cao W W,Yang B and Placido F 2013 A UV light enhanced TiO2/graphene device for oxygen sensing at room temperature RSC Adv. 3 22185–90

    Tools

    Get Citation

    Copy Citation Text

    Xinxin He, Ping Guo, Xuyang An, Yuyang Li, Jiatai Chen, Xingyu Zhang, Lifeng Wang, Mingjin Dai, Chaoliang Tan, Jia Zhang. Preparation of single atom catalysts for high sensitive gas sensing[J]. International Journal of Extreme Manufacturing, 2024, 6(3): 32007

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Oct. 7, 2023

    Accepted: --

    Published Online: Sep. 11, 2024

    The Author Email: Zhang Jia (zhangjia@hit.edu.cn)

    DOI:10.1088/2631-7990/ad3316

    Topics