Bulletin of the Chinese Ceramic Society, Volume. 41, Issue 4, 1276(2022)
Peridynamic Simulation of Concrete Fracture Behavior under Uniaxial Tension
[1] [1] BALLARINI R, SHAH S P, KEER L M. Crack growth in cement-based composites[J]. Engineering Fracture Mechanics, 1984, 20(3): 433-445.
[2] [2] COTTERELL B, MAI Y W. Crack growth resistance curve and size effect in the fracture of cement paste[J]. Journal of Materials Science, 1987, 22(8): 2734-2738.
[3] [3] DE XIE, WAAS A M. Discrete cohesive zone model for mixed-mode fracture using finite element analysis[J]. Engineering Fracture Mechanics, 2006, 73(13): 1783-1796.
[4] [4] ZHOU X Q, HAO H. Modelling of compressive behaviour of concrete-like materials at high strain rate[J]. International Journal of Solids and Structures, 2008, 45(17): 4648-4661.
[6] [6] MAI Y W. Cohesive zone and crack-resistance (R)-curve of cementitious materials and their fibre-reinforced composites[J]. Engineering Fracture Mechanics, 2002, 69(2): 219-234.
[7] [7] CHEN E, LEUNG C K Y. Finite element modeling of concrete cover cracking due to non-uniform steel corrosion[J]. Engineering Fracture Mechanics, 2015, 134: 61-78.
[8] [8] WANG X F, YANG Z J, JIVKOV A P. Monte Carlo simulations of mesoscale fracture of concrete with random aggregates and pores: a size effect study[J]. Construction and Building Materials, 2015, 80: 262-272.
[9] [9] MANZOLI O L, MAEDO M A, BITENCOURT L A G J, et al. On the use of finite elements with a high aspect ratio for modeling cracks in quasi-brittle materials[J]. Engineering Fracture Mechanics, 2016, 153: 151-170.
[10] [10] WRIGGERS P, MOFTAH S O. Mesoscale models for concrete: homogenisation and damage behaviour[J]. Finite Elements in Analysis and Design, 2006, 42(7): 623-636.
[11] [11] MOS N, BELYTSCHKO T. Extended finite element method for cohesive crack growth[J]. Engineering Fracture Mechanics, 2002, 69(7): 813-833.
[12] [12] DU X L, JIN L, MA G W. Numerical modeling tensile failure behavior of concrete at mesoscale using extended finite element method[J]. International Journal of Damage Mechanics, 2014, 23(7): 872-898.
[13] [13] FRIES T P, BELYTSCHKO T. The extended/generalized finite element method: an overview of the method and its applications[J]. International Journal for Numerical Methods in Engineering, 2010, 84(3): 253-304.
[15] [15] CUSATIS G, PELESSONE D, MENCARELLI A. Lattice discrete particle model (LDPM) for failure behavior of concrete. I: theory[J]. Cement and Concrete Composites, 2011, 33(9): 881-890.
[16] [16] JIANG N D, ZHANG H Z, CHANG Z, et al. Discrete lattice fracture modelling of hydrated cement paste under uniaxial compression at micro-scale[J]. Construction and Building Materials, 2020, 263: 120153.
[17] [17] ASAHINA D, LANDIS E N, BOLANDER J E. Modeling of phase interfaces during pre-critical crack growth in concrete[J]. Cement and Concrete Composites, 2011, 33(9): 966-977.
[18] [18] MADENCI E, OTERKUS E. Peridynamic theory and its applications[M]. New York: Springer New York, 2014.
[20] [20] SILLING S A. Reformulation of elasticity theory for discontinuities and long-range forces[J]. Journal of the Mechanics and Physics of Solids, 2000, 48(1): 175-209.
[21] [21] SILLING S A, ASKARI E. A meshfree method based on the peridynamic model of solid mechanics[J]. Computers & Structures, 2005, 83(17/18): 1526-1535.
[22] [22] SILLING S A, LEHOUCQ R B. Convergence of peridynamics to classical elasticity theory[J]. Journal of Elasticity, 2008, 93(1): 13-37.
[23] [23] HUANG D, ZHANG Q, QIAO P Z. Damage and progressive failure of concrete structures using non-local peridynamic modeling[J]. Science China Technological Sciences, 2011, 54(3): 591-596.
[24] [24] HOU D S, ZHANG W, GE Z, et al. Experimentally validated peridynamic fracture modelling of mortar at the meso-scale[J]. Construction and Building Materials, 2021, 267: 120939.
[25] [25] OTERKUS E, MADENCI E, WECKNER O, et al. Combined finite element and peridynamic analyses for predicting failure in a stiffened composite curved panel with a central slot[J]. Composite Structures, 2012, 94(3): 839-850.
[26] [26] LIU W Y, HONG J W. A coupling approach of discretized peridynamics with finite element method[J]. Computer Methods in Applied Mechanics and Engineering, 2012, 245/246: 163-175.
[27] [27] LI W J, GUO L. Meso-fracture simulation of cracking process in concrete incorporating three-phase characteristics by peridynamic method[J]. Construction and Building Materials, 2018, 161: 665-675.
[30] [30] HOU D S, ZHANG J R, LI Z J, et al. Uniaxial tension study of calcium silicate hydrate (C-S-H): structure, dynamics and mechanical properties[J]. Materials and Structures, 2015, 48(11): 3811-3824.
Get Citation
Copy Citation Text
ZHANG Chenming, HOU Dongshuai, ZHANG Hongzhi, ZHANG Wei. Peridynamic Simulation of Concrete Fracture Behavior under Uniaxial Tension[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(4): 1276
Category:
Received: Sep. 17, 2021
Accepted: --
Published Online: Aug. 3, 2022
The Author Email: Chenming ZHANG (chenming_zhang@126.com)
CSTR:32186.14.