International Journal of Extreme Manufacturing, Volume. 6, Issue 4, 42001(2024)

Recent advances in high charge density triboelectric nanogenerators

Cui Xin... Nie Jiaheng and Zhang Yan |Show fewer author(s)
References(131)

[1] [1] Liu D et al 2022 Standardized measurement of dielectric materials' intrinsic triboelectric charge density through the suppression of air breakdown Nat. Commun.13 6019

[2] [2] Zhao Z H, Zhou L L, Li S X, Liu D, Li Y H, Gao Y K, Liu Y B, Dai Y J, Wang J and Wang Z L 2021 Selection rules of triboelectric materials for direct-current triboelectric nanogenerator Nat. Commun.12 4686

[3] [3] Zhou Y K, Shen M L, Cui X, Shao Y C, Li L J and Zhang Y 2021 Triboelectric nanogenerator based self-powered sensor for artificial intelligence Nano Energy84 105887

[4] [4] Fan F R, Tian Z Q and Wang Z L 2012 Flexible triboelectric generator Nano Energy1 328–34

[5] [5] Wang Z L 2017 On Maxwell's displacement current for energy and sensors: the origin of nanogenerators Mater. Today20 74–82

[6] [6] Wang Z L and Wang A C 2019 On the origin of contact-electrification Mater. Today30 34–51

[7] [7] Zhou L L, Liu D, Wang J and Wang Z L 2020 Triboelectric nanogenerators: fundamental physics and potential applications Friction8 481–506

[8] [8] He W et al 2022 Capturing dissipation charge in charge space accumulation area for enhancing output performance of sliding triboelectric nanogenerator Adv. Energy Mater.12 2201454

[9] [9] Liu W L, Wang Z and Hu C G 2021 Advanced designs for output improvement of triboelectric nanogenerator system Mater. Today45 93–119

[10] [10] Luo J J, Gao W C and Wang Z L 2021 The triboelectric nanogenerator as an innovative technology toward intelligent sports Adv. Mater.33 2004178

[11] [11] Wang J Y, Ding W B, Pan L, Wu C S, Yu H, Yang L J, Liao R J and Wang Z L 2018 Self-powered wind sensor system for detecting wind speed and direction based on a triboelectric nanogenerator ACS Nano12 3954–63

[12] [12] Zi Y L, Niu S M, Wang J, Wen Z, Tang W and Wang Z L 2015 Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators Nat. Commun.6 8376

[13] [13] Wang Z L 2021 From contact electrification to triboelectric nanogenerators Rep. Prog. Phys.84 096502

[14] [14] Zou H Y et al 2020 Quantifying and understanding the triboelectric series of inorganic non-metallic materials Nat. Commun.11 2093

[15] [15] Zou H Y et al 2019 Quantifying the triboelectric series Nat. Commun.10 1427

[16] [16] Wang J, Wu C S, Dai Y J, Zhao Z H, Wang A, Zhang T J and Wang Z L 2017 Achieving ultrahigh triboelectric charge density for efficient energy harvesting Nat. Commun.8 88

[17] [17] Liu Z Q, Huang Y Z, Shi Y X, Tao X L, He H Z, Chen F D, Huang Z X, Wang Z L, Chen X Y and Qu J P 2022 Fabrication of triboelectric polymer films via repeated rheological forging for ultrahigh surface charge density Nat. Commun.13 4083

[18] [18] Choi D et al 2023 Recent advances in triboelectric nanogenerators: from technological progress to commercial applications ACS Nano17 11087–219

[19] [19] Kim D W, Lee J H, Kim J K and Jeong U 2020 Material aspects of triboelectric energy generation and sensors NPG Asia Mater.12 6

[20] [20] Xia X, Fu J J and Zi Y L 2019 A universal standardized method for output capability assessment of nanogenerators Nat. Commun.10 4428

[21] [21] Wu H, Wang S, Wang Z K and Zi Y L 2021 Achieving ultrahigh instantaneous power density of 10 MW/m2 by leveraging the opposite-charge-enhanced transistor-like triboelectric nanogenerator (OCT-TENG) Nat. Commun.12 5470

[22] [22] Wu H Y, Fu S K, He W C, Shan C C, Wang J, Du Y, Du S H, Li B X and Hu C G 2022 Improving and quantifying surface charge density via charge injection enabled by air breakdown Adv. Funct. Mater.32 2203884

[23] [23] Cui S N, Zhou L L, Liu D, Li S X, Liu L, Chen S Y, Zhao Z H, Yuan W, Wang Z L and Wang J 2022 Improving performance of triboelectric nanogenerators by dielectric enhancement effect Matter5 180–93

[24] [24] Wu H Y, He W C, Shan C C, Wang Z, Fu S K, Tang Q, Guo H Y, Du Y, Liu W L and Hu C 2022 Achieving remarkable charge density via self-polarization of polar high-k material in a charge-excitation triboelectric nanogenerator Adv. Mater.34 2109918

[25] [25] Chen B D et al 2018 Au nanocomposite enhanced electret film for triboelectric nanogenerator Nano Res.11 3096–105

[26] [26] Li M J, Lu H W, Wang S W, Li R P, Chen J Y, Chuang W S, Yang F S, Lin Y F, Chen C Y and Lai Y C 2022 Filling the gap between topological insulator nanomaterials and triboelectric nanogenerators Nat. Commun.13 938

[27] [27] Liu Y K, Liu W L, Wang Z, He W C, Tang Q, Xi Y, Wang X, Guo H Y and Hu C G 2020 Quantifying contact status and the air-breakdown model of charge-excitation triboelectric nanogenerators to maximize charge density Nat. Commun.11 1599

[28] [28] Wang S H, Xie Y N, Niu S M, Lin L, Liu C, Zhou Y S and Wang Z L 2014 Maximum surface charge density for triboelectric nanogenerators achieved by ionized-air injection: methodology and theoretical understanding Adv. Mater.26 6720–8

[29] [29] Zhou T, Zhang L M, Xue F, Tang W, Zhang C and Wang Z L 2016 Multilayered electret films based triboelectric nanogenerator Nano Res.9 1442–51

[30] [30] Li S Y, Fan Y, Chen H Q, Nie J H, Liang Y X, Tao X L, Zhang J, Chen X Y, Fu E G and Wang Z L 2020 Manipulating the triboelectric surface charge density of polymers by low-energy helium ion irradiation/implantation Energy Environ. Sci.13 896–907

[31] [31] Fu J J, Xu G Q, Li C H, Xia X, Guan D, Li J, Huang Z Y and Zi Y L 2020 Achieving ultrahigh output energy density of triboelectric nanogenerators in high-pressure gas environment Adv. Sci.7 2001757

[32] [32] Yi Z Y, Liu D, Zhou L L, Li S X, Zhao Z H, Li X Y, Wang Z L and Wang J 2021 Enhancing output performance of direct-current triboelectric nanogenerator under controlled atmosphere Nano Energy84 105864

[33] [33] He W et al 2022 Ultrahigh performance triboelectric nanogenerator enabled by charge transmission in interfacial lubrication and potential decentralization design Research2022 9812865

[34] [34] Wang S H, Zi Y L, Zhou Y S, Li S M, Fan F R, Lin L and Wang Z L 2016 Molecular surface functionalization to enhance the power output of triboelectric nanogenerators J. Mater. Chem. A 4 3728–34

[35] [35] Li H Y, Su L, Kuang S Y, Pan C F, Zhu G and Wang Z L 2015 Significant enhancement of triboelectric charge density by fluorinated surface modification in nanoscale for converting mechanical energy Adv. Funct. Mater.25 5691–7

[36] [36] Lee H, Lee H E, Wang H S, Kang S M, Lee D, Kim Y H, Shin J H, Lim Y W, Lee K J and Bae B S 2020 Hierarchically surface-textured ultrastable hybrid film for large-scale triboelectric nanogenerators Adv. Funct. Mater.30 2005610

[37] [37] Bai Y, Xu L, Lin S Q, Luo J J, Qin H F, Han K and Wang Z L 2020 Charge pumping strategy for rotation and sliding type triboelectric nanogenerators Adv. Energy Mater.10 2000605

[38] [38] Cheng L, Xu Q, Zheng Y B, Jia X F and Qin Y 2018 A self-improving triboelectric nanogenerator with improved charge density and increased charge accumulation speed Nat. Commun.9 3773

[39] [39] Liu W L et al 2019 Integrated charge excitation triboelectric nanogenerator Nat. Commun.10 1426

[40] [40] Cheng P et al 2019 Largely enhanced triboelectric nanogenerator for efficient harvesting of water wave energy by soft contacted structure Nano Energy57 432–9

[41] [41] Wang J, Li S M, Yi F, Zi Y L, Lin J, Wang X F, Xu Y L and Wang Z L 2016 Sustainably powering wearable electronics solely by biomechanical energy Nat. Commun.7 12744

[42] [42] Singh H H and Khare N 2019 Improved performance of ferroelectric nanocomposite flexible film based triboelectric nanogenerator by controlling surface morphology, polarizability, and hydrophobicity Energy178 765–71

[43] [43] Zhang C L, Zhou L L, Cheng P, Yin X, Liu D, Li X Y, Guo H Y, Wang Z L and Wang J 2020 Surface charge density of triboelectric nanogenerators: theoretical boundary and optimization methodology Appl. Mater. Today18 100496

[44] [44] Xu L, Bu T Z, Yang X D, Zhang C and Wang Z L 2018 Ultrahigh charge density realized by charge pumping at ambient conditions for triboelectric nanogenerators Nano Energy49 625–33

[45] [45] Zhao Z H, Dai Y J, Liu D, Zhou L L, Li S X, Wang Z L and Wang J 2020 Rationally patterned electrode of direct-current triboelectric nanogenerators for ultrahigh effective surface charge density Nat. Commun.11 6186

[46] [46] Zhang R C, Hao M M, Bai S, Song P Z, Jia X F, Gao W H, Xu Q, Wen J, Cheng L and Qin Y 2022 Multichannel driving triboelectric nanogenerator for enhancing the output charge density Nano Energy98 107272

[47] [47] Zhang L A, Liu S H, Wen J, Huo X Q, Cheng B L, Wu Z Y, Wang L F, Qin Y and Wang Z L 2023 Collecting the space-distributed Maxwell's displacement current for ultrahigh electrical density of TENG through a 3D fractal structure design Energy Environ. Sci.16 3781–91

[48] [48] Liu D, Yin X, Guo H Y, Zhou L L, Li X Y, Zhang C L, Wang J and Wang Z L 2019 A constant current triboelectric nanogenerator arising from electrostatic breakdown Sci. Adv.5 eaav6437

[49] [49] Liu D, Zhou L L, Li S X, Zhao Z H, Yin X, Yi Z Y, Zhang C L, Li X Y, Wang J and Wang Z L 2020 Hugely enhanced output power of direct-current triboelectric nanogenerators by using electrostatic breakdown effect Adv. Mater. Technol.5 2000289

[50] [50] Li K X et al 2024 High efficiency triboelectric charge capture for high output direct current electricity Energy Environ. Sci.17 580–90

[51] [51] Wang Z L 2020 Triboelectric nanogenerator (TENG)—sparking an energy and sensor revolution Adv. Energy Mater.10 2000137

[52] [52] Tao X L, Chen X Y and Wang Z L 2023 Design and synthesis of triboelectric polymers for high performance triboelectric nanogenerators Energy Environ. Sci.16 3654–78

[53] [53] Yu Y, Gao Q, Zhang X S, Zhao D, Xia X, Wang J L, Li H Y, Wang Z L and Cheng T H 2023 Contact-sliding-separation mode triboelectric nanogenerator Energy Environ. Sci.16 3932–41

[54] [54] Tang W, Sun Q J and Wang Z L 2023 Self-powered sensing in wearable electronics—a paradigm shift technology Chem. Rev.123 12105–34

[55] [55] Zhang W L et al 2023 Cellulose template-based triboelectric nanogenerators for self-powered sensing at high humidity Nano Energy108 108196

[56] [56] Lu Y J, Tian H, Cheng J, Zhu F, Liu B, Wei S S, Ji L H and Wang Z L 2022 Decoding lip language using triboelectric sensors with deep learning Nat. Commun.13 1401

[57] [57] Mao J Q, Zhou P E, Wang X Y, Yao H B, Liang L Y, Zhao Y Q, Zhang J W, Ban D Y and Zheng H W 2023 A health monitoring system based on flexible triboelectric sensors for intelligence medical internet of things and its applications in virtual reality Nano Energy118 108984

[58] [58] Prasad G, Graham S A, Yu J S, Kim H and Lee D W 2023 Investigated a PLL surface-modified Nylon 11 electrospun as a highly tribo-positive frictional layer to enhance output performance of triboelectric nanogenerators and self-powered wearable sensors Nano Energy108 108178

[59] [59] Zhang X S, Yu Y, Xia X, Zhang W Q, Cheng X J, Li H Y, Wang Z L and Cheng T H 2023 Multi-mode vibrational triboelectric nanogenerator for broadband energy harvesting and utilization in smart transmission lines Adv. Energy Mater.13 2302353

[60] [60] Li H, Wen J, Ou Z Q, Su E M, Xing F J, Yang Y H, Sun Y S, Wang Z L and Chen B 2023 Leaf-like TENGs for harvesting gentle wind energy at an air velocity as low as 0.2 m s−1Adv. Funct. Mater.33 2212207

[61] [61] Xia X, Zhou Z, Shang Y, Yang Y and Zi Y 2023 Metallic glass-based triboelectric nanogenerators Nat. Commun.14 1023

[62] [62] Lee D M, Rubab N, Hyun I, Kang W, Kim Y J, Kang M, Choi B O and Kim S W 2022 Ultrasound-mediated triboelectric nanogenerator for powering on-demand transient electronics Sci. Adv.8 eabl8423

[63] [63] Pace G, Del Rio Castillo A E, Lamperti A, Lauciello S and Bonaccorso F 2023 2D materials-based electrochemical triboelectric nanogenerators Adv. Mater.35 2211037

[64] [64] Sun Q Z et al 2023 Density-of-states matching-induced ultrahigh current density and high-humidity resistance in a simply structured triboelectric nanogenerator Adv. Mater.35 2210915

[65] [65] Wang J, Zhang B F, Zhao Z H, Gao Y K, Liu D, Liu X R, Yang P Y, Guo Z T, Wang Z L and Wang J 2023 Boosting the charge density of triboelectric nanogenerator by suppressing air breakdown and dielectric charge leakage Adv. Energy Mater.14 2303874

[66] [66] Cui N Y, Gu L, Lei Y M, Liu J M, Qin Y, Ma X H, Hao Y and Wang Z L 2016 Dynamic behavior of the triboelectric charges and structural optimization of the friction layer for a triboelectric nanogenerator ACS Nano10 6131–8

[67] [67] Li Y H, Zhao Z H, Liu L, Zhou L L, Liu D, Li S X, Chen S Y, Dai Y J, Wang J and Wang Z L 2021 Improved output performance of triboelectric nanogenerator by fast accumulation process of surface charges Adv. Energy Mater.11 2100050

[68] [68] Wang C Y, Guo H Y, Wang P, Li J W, Sun Y H and Zhang D 2023 An advanced strategy to enhance TENG output: reducing triboelectric charge decay Adv. Mater.35 2209895

[69] [69] Cui X and Zhang Y 2020 Dynamical charge transfer for high-performance triboelectric nanogenerators Nano Select1 461–70

[70] [70] Yu Y, Li H Y, Zhao D, Gao Q, Li X, Wang J L, Wang Z L and Cheng T H 2023 Material's selection rules for high performance triboelectric nanogenerators Mater. Today64 61–71

[71] [71] Walden R, Aazem I, Babu A and Pillai S C 2023 Textile-triboelectric nanogenerators (T-TENGs) for wearable energy harvesting devices Chem. Eng. J.451 138741

[72] [72] Yang Z, Yang Y Y, Wang H, Liu F, Lu Y J, Ji L H, Wang Z L and Cheng J 2021 Charge pumping for sliding-mode triboelectric nanogenerator with voltage stabilization and boosted current Adv. Energy Mater.11 2101147

[73] [73] Qi Y C, Liu G X, Bu T Z, Zeng J H, Zhang Z and Zhang C 2022 Ferromagnetic-based charge-accumulation triboelectric nanogenerator with ultrahigh surface charge density Small18 2201754

[74] [74] Fu J J, Xia X, Xu G Q, Li X Y and Zi Y L 2019 On the maximal output energy density of nanogenerators ACS Nano13 13257–63

[75] [75] Zi Y L, Wang J, Wang S H, Li S M, Wen Z, Guo H Y and Wang Z L 2016 Effective energy storage from a triboelectric nanogenerator Nat. Commun.7 10987

[76] [76] Zhao Q H, Wu H Y, Wang J, Xu S Y, He W C, Shan C C, Fu S K, Li G, Li K X and Hu C G 2023 High-efficiency charge injection with discharge mitigation strategy for triboelectric dielectric materials Adv. Energy Mater.13 2302099

[77] [77] Guo Z T, Yang P Y, Zhao Z H, Gao Y K, Zhang J Y, Zhou L L, Wang J and Wang Z L 2023 Achieving a highly efficient triboelectric nanogenerator via a charge reversion process Energy Environ. Sci.16 5294–304

[78] [78] Wu H Y, Wang J, He W C, Shan C C, Fu S K, Li G, Zhao Q H, Liu W L and Hu C G 2023 Ultrahigh output charge density achieved by charge trapping failure of dielectric polymers Energy Environ. Sci.16 2274–83

[79] [79] Zi Y L, Wu C S, Ding W B and Wang Z L 2017 Maximized effective energy output of contact-separation-triggered triboelectric nanogenerators as limited by air breakdown Adv. Funct. Mater.27 1700049

[80] [80] Chen A H, Zhang C, Zhu G and Wang Z L 2020 Polymer materials for high-performance triboelectric nanogenerators Adv. Sci.7 2000186

[81] [81] Yu A F, Zhu Y X, Wang W and Zhai J Y 2019 Progress in triboelectric materials: toward high performance and widespread applications Adv. Funct. Mater.29 1900098

[82] [82] Fan Y et al 2021 Negative triboelectric polymers with ultrahigh charge density induced by ion implantation Nano Energy90 106574

[83] [83] Wang J, Li G, Xu S Y, Wu H Y, Fu S K, Shan C C, He W C, Zhao Q H, Li K X and Hu C G 2023 Remarkably enhanced charge density of inorganic material via regulating contact barrier difference and charge trapping for triboelectric nanogenerator Adv. Funct. Mater.33 2304221

[84] [84] Xia X N, Chen J, Liu G L, Javed M S, Wang X and Hu C G 2017 Aligning graphene sheets in PDMS for improving output performance of triboelectric nanogenerator Carbon111 569–76

[85] [85] Cui X, Zhang Y M and Zhang Y 2023 Multi-charge storage layer model of high-charge-density triboelectric nanogenerator Nanoenergy Adv.3 247–58

[86] [86] Chun J, Kim J W, Jung W S, Kang C Y, Kim S W, Wang Z L and Baik J M 2015 Mesoporous pores impregnated with Au nanoparticles as effective dielectrics for enhancing triboelectric nanogenerator performance in harsh environments Energy Environ. Sci.8 3006–12

[87] [87] Sun H, Tian H, Yang Y, Xie D, Zhang Y C, Liu X, Ma S, Zhao H M and Ren T L 2013 A novel flexible nanogenerator made of ZnO nanoparticles and multiwall carbon nanotube Nanoscale5 6117–23

[88] [88] Chen J, Guo H Y, He X M, Liu G L, Xi Y, Shi H F and Hu C G 2016 Enhancing performance of triboelectric nanogenerator by filling high dielectric nanoparticles into sponge PDMS film ACS Appl. Mater. Interfaces8 736–44

[89] [89] Lee K Y et al 2014 Hydrophobic sponge structure-based triboelectric nanogenerator Adv. Mater.26 5037–42

[90] [90] Fu S K, Wu H Y, He W C, Li Q Y, Shan C C, Wang J, Du Y, Du S H, Huang Z Y and Hu C G 2023 Conversion of dielectric surface effect into volume effect for high output energy Adv. Mater.35 2302954

[91] [91] Fu S K, He W C, Wu H Y, Shan C C, Du Y, Li G, Wang P, Guo H Y, Chen J and Hu C G 2022 High output performance and ultra-durable DC output for triboelectric nanogenerator inspired by primary cell Nano Micro. Lett.14 155

[92] [92] Jiang D D, Liu G X, Li W J, Bu T Z, Wang Y P, Zhang Z, Pang Y K, Xu S H, Yang H and Zhang C 2020 A leaf-shaped triboelectric nanogenerator for multiple ambient mechanical energy harvesting IEEE Trans. Power Electron.35 25–32

[93] [93] Shan C C, He W C, Wu H Y, Fu S K, Tang Q, Wang Z, Du Y, Wang J, Guo H Y and Hu C G 2022 A high-performance bidirectional direct current TENG by triboelectrification of two dielectrics and local corona discharge Adv. Energy Mater.12 2200963

[94] [94] Wang Z L 2014 Triboelectric nanogenerators as new energy technology and self-powered sensors—Principles, problems and perspectives Farad. Disc.176 447–58

[95] [95] Wu C S, Wang A C, Ding W B, Guo H Y and Wang Z L 2019 Triboelectric nanogenerator: a foundation of the energy for the new era Adv. Energy Mater.9 1802906

[96] [96] Zhang C, Tang W, Han C B, Fan F R and Wang Z L 2014 Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy Adv. Mater.26 3580–91

[97] [97] Chen J, Guo H Y, Hu C G and Wang Z L 2020 Robust triboelectric nanogenerator achieved by centrifugal force induced automatic working mode transition Adv. Energy Mater.10 2000886

[98] [98] Fu S K, He W C, Tang Q, Wang Z, Liu W L, Li Q Y, Shan C C, Long L, Hu C G and Liu H 2022 An ultrarobust and high-performance rotational hydrodynamic triboelectric nanogenerator enabled by automatic mode switching and charge excitation Adv. Mater.34 2105882

[99] [99] Han J J, Feng Y W, Chen P F, Liang X, Pang H, Jiang T and Wang Z L 2022 Wind-driven soft-contact rotary triboelectric nanogenerator based on rabbit fur with high performance and durability for smart farming Adv. Funct. Mater.32 2108580

[100] [100] He W C, Shan C C, Fu S K, Wu H Y, Wang J, Mu Q J, Li G and Hu C G 2023 Large harvested energy by self-excited liquid suspension triboelectric nanogenerator with optimized charge transportation behavior Adv. Mater.35 2209657

[101] [101] Long L, Liu W L, Wang Z, He W C, Li G, Tang Q, Guo H Y, Pu X J, Liu Y K and Hu C G 2021 High performance floating self-excited sliding triboelectric nanogenerator for micro mechanical energy harvesting Nat. Commun.12 4689

[102] [102] Tang Q, Wang Z, Chang W X, Sun J F, He W C, Zeng Q X, Guo H Y and Hu C G 2022 Interface static friction enabled ultra-durable and high output sliding mode triboelectric nanogenerator Adv. Funct. Mater.32 2202055

[103] [103] Zhou L L, Liu D, Zhao Z H, Li S X, Liu Y B, Liu L, Gao Y K, Wang Z L and Wang J 2020 Simultaneously enhancing power density and durability of sliding-mode triboelectric nanogenerator via interface liquid lubrication Adv. Energy Mater.10 2002920

[104] [104] Shao J J, Tang W, Jiang T, Chen X Y, Xu L, Chen B D, Zhou T, Deng C R and Wang Z L 2017 A multi-dielectric-layered triboelectric nanogenerator as energized by corona discharge Nanoscale9 9668–75

[105] [105] Chun J, Ye B U, Lee J W, Choi D, Kang C Y, Kim S W, Wang Z L and Baik J M 2016 Boosted output performance of triboelectric nanogenerator via electric double layer effect Nat. Commun.7 12985

[106] [106] Yuan M, Yu W P, Jiang Y W, Ding Z J, Zhang Z F, Zhang X Y and Xie Y N 2022 Triboelectric nanogenerator metamaterials for joint structural vibration mitigation and self-powered structure monitoring Nano Energy103 107773

[107] [107] Wang H M, Xu L, Bai Y and Wang Z L 2020 Pumping up the charge density of a triboelectric nanogenerator by charge-shuttling Nat. Commun.11 4203

[108] [108] Shan C C, Li K X, Cheng Y T and Hu C G 2023 Harvesting environment mechanical energy by direct current triboelectric nanogenerators Nano Micro. Lett.15 127

[109] [109] Gao Y K, Liu D, Zhou L L, Li S X, Zhao Z H, Yin X, Chen S Y, Wang Z L and Wang J 2021 A robust rolling-mode direct-current triboelectric nanogenerator arising from electrostatic breakdown effect Nano Energy85 106014

[110] [110] Chen S Y, Liu D, Zhou L L, Li S X, Zhao Z H, Cui S N, Gao Y K, Li Y H, Wang Z L and Wang J 2021 Improved output performance of direct-current triboelectric nanogenerator through field enhancing breakdown effect Adv. Mater. Technol.6 2100195

[111] [111] Liu L, Zhao Z H, Li Y H, Li X Y, Liu D, Li S X, Gao Y K, Zhou L L, Wang J and Wang Z L 2022 Achieving ultrahigh effective surface charge density of direct-current triboelectric nanogenerator in high humidity Small18 2201402

[112] [112] Cheng R W, Ning C, Chen P F, Sheng F F, Wei C H, Zhang Y H, Peng X, Dong K and Wang Z L 2022 Enhanced output of on-body direct-current power textiles by efficient energy management for sustainable working of mobile electronics Adv. Energy Mater.12 2201532

[113] [113] Dong K, Peng X, Cheng R W, Ning C, Jiang Y, Zhang Y H and Wang Z L 2022 Advances in high-performance autonomous energy and self-powered sensing textiles with novel 3D fabric structures Adv. Mater.34 2109355

[114] [114] Shan C et al 2022 Efficiently utilizing shallow and deep trapped charges on polyester fiber cloth surface by double working mode design for high output and durability TENG Nano Energy104 107968

[115] [115] Cui S N, Liu D, Yang P Y, Liu J Q, Gao Y K, Zhao Z H, Zhou L L, Zhang J Y, Wang Z L and Wang J 2023 Triboelectric-material-pairs selection for direct-current triboelectric nanogenerators Nano Energy112 108509

[116] [116] Chen Y et al 2021 Interfacial laser-induced graphene enabling high-performance liquid−solid triboelectric nanogenerator Adv. Mater.33 2104290

[117] [117] Guo W Y, Xia Y F, Zhu Y, Han S L, Li Q Q and Wang X 2023 Laser-induced graphene based triboelectric nanogenerator for accurate wireless control and tactile pattern recognition Nano Energy108 108229

[118] [118] Shrestha K, Pradhan G B, Asaduzzaman M, Reza M S, Bhatta T, Kim H, Lee Y and Park J Y 2024 A breathable, reliable, and flexible siloxene incorporated porous SEBS-based triboelectric nanogenerator for human–machine interactions Adv. Energy Mater.14 2302471

[119] [119] Funayama R, Hayashi S and Terakawa M 2023 Laser-induced graphitization of lignin/PLLA composite sheets for biodegradable triboelectric nanogenerators ACS Sustain. Chem. Eng.11 3114–22

[120] [120] Zhang S C, Xiao Y, Chen H M, Zhang Y L, Liu H Y, Qu C M, Shao H X and Xu Y 2023 Flexible triboelectric tactile sensor based on a robust MXene/leather film for human–machine interaction ACS Appl. Mater. Interfaces15 13802–12

[121] [121] Huang J, Fu X P, Liu G X, Xu S H, Li X W, Zhang C and Jiang L 2019 Micro/nano-structures-enhanced triboelectric nanogenerators by femtosecond laser direct writing Nano Energy62 638–44

[122] [122] Yi P, Fu X P, Liu Y, Zhang X Y, Zhang C and Li X W 2023 Triboelectric active pressure sensor with ultrabroad linearity range by femtosecond laser shaping based on electrons dynamics control Nano Energy113 108592

[123] [123] Zhang H, Yin K, Wang L X, Deng Q W, He Y C, Xiao Z X, Li G Q and Dai G Z 2023 A robust droplet triboelectric nanogenerator with self-cleaning ability achieved by femtosecond laser ACS Appl. Mater. Interfaces15 30902–12

[124] [124] Kim D, Tcho I W, Jin I K, Park S J, Jeon S B, Kim W G, Cho H S, Lee H S, Jeoung S C and Choi Y K 2017 Direct-laser-patterned friction layer for the output enhancement of a triboelectric nanogenerator Nano Energy35 379–86

[125] [125] Li H, Wang S Y, Dong X R, Ding X R, Sun Y N, Tang H, Lu Y J, Tang Y and Wu X Y 2022 Recent advances on ink-based printing techniques for triboelectric nanogenerators: printable inks, printing technologies and applications Nano Energy101 107585

[126] [126] Paosangthong W, Wagih M, Torah R and Beeby S 2019 Textile-based triboelectric nanogenerator with alternating positive and negative freestanding grating structure Nano Energy66 104148

[127] [127] Yun J, Kim I, Ryoo M, Kim Y, Jo S and Kim D 2021 Paint based triboelectric nanogenerator using facile spray deposition towards smart traffic system and security application Nano Energy88 106236

[128] [128] Wang X D, Zhang Y F, Zhang X J, Huo Z H, Li X Y, Que M L, Peng Z C, Wang H and Pan C F 2018 A highly stretchable transparent self-powered triboelectric tactile sensor with metallized nanofibers for wearable electronics Adv. Mater.30 1706738

[129] [129] Qian C C, Li L H, Gao M, Yang H Y, Cai Z R, Chen B D, Xiang Z Y, Zhang Z J and Song Y L 2019 All-printed 3D hierarchically structured cellulose aerogel based triboelectric nanogenerator for multi-functional sensors Nano Energy63 103885

[130] [130] Lee S et al 2023 Truly form-factor–free industrially scalable system integration for electronic textile architectures with multifunctional fiber devices Sci. Adv.9 eadf4049

[131] [131] Cheng T H, Shao J J and Wang Z L 2023 Triboelectric nanogenerators Nat. Rev. Methods Primers3 39

Tools

Get Citation

Copy Citation Text

Cui Xin, Nie Jiaheng, Zhang Yan. Recent advances in high charge density triboelectric nanogenerators[J]. International Journal of Extreme Manufacturing, 2024, 6(4): 42001

Download Citation

EndNote(RIS)BibTexPlain Text
Save article for my favorites
Paper Information

Category: Topical Review

Received: Dec. 11, 2023

Accepted: Dec. 25, 2024

Published Online: Dec. 25, 2024

The Author Email:

DOI:10.1088/2631-7990/ad39ba

Topics