Acta Optica Sinica, Volume. 41, Issue 23, 2324001(2021)

Structure Design of Surface Wave Exciting Grating Based on Caustic Theory

Han Jiao1,2, Mengmeng Zhang1,2, Peng Li1,2、*, Sheng Liu1,2、**, and Jianlin Zhao1,2
Author Affiliations
  • 1Key Laboratory of Light-Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi′an, Shaanxi 710129, China
  • 2Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi′an, Shaanxi 710129, China
  • show less
    References(27)

    [1] Ozbay E. Plasmonics: merging photonics and electronics at nanoscale dimensions[J]. Science, 311, 189-193(2006).

    [2] Takayama O, Crasovan L, Artigas D et al. Observation of Dyakonov surface waves[J]. Physical Review Letters, 102, 043903(2009).

    [3] Robertson W M, Arjavalingam G, Meade R D et al. Observation of surface photons on periodic dielectric arrays[J]. Optics Letters, 18, 528-530(1993).

    [4] Xue T Y, Liang W Y, Li Y W et al. Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor[J]. Nature Communications, 10, 28(2019).

    [5] Rizzo R, Alvaro M, Danz N et al. Bloch surface wave label-free and fluorescence platform for the detection of VEGF biomarker in biological matrices[J]. Sensors and Actuators B: Chemical, 255, 2143-2150(2018).

    [6] Niu D K, Zerrad M, Lereu A et al. Excitation of Bloch surface waves in zero-admittance multilayers for high-sensitivity sensor applications[J]. Physical Review Applied, 13, 054064(2020).

    [7] Yeh P, Yariv A, Hong C S. Electromagnetic propagation in periodic stratified media. I. general theory[J]. Journal of the Optical Society of America, 67, 423-438(1977).

    [8] John S. Strong localization of photons in certain disordered dielectric superlattices[J]. Physical Review Letters, 58, 2486-2489(1987).

    [9] Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Physical Review Letters, 58, 2059-2062(1987).

    [10] Zhang Z, Satpathy S. Electromagnetic wave propagation in periodic structures: Bloch wave solution of Maxwell’s equations[J]. Physical Review Letters, 65, 2650-2653(1990).

    [11] Meade R D, Brommer K D, Rappe A M et al. Electromagnetic Bloch waves at the surface of a photonic crystal[J]. Physical Review B, Condensed Matter, 44, 10961-10964(1991).

    [12] Yeh P, Yariv A, Cho A Y. Optical surface waves in periodic layered media[J]. Applied Physics Letters, 32, 104-105(1978).

    [13] Wang R X, Wang Y, Zhang D G et al. Diffraction-free Bloch surface waves[J]. ACS Nano, 11, 5383-5390(2017).

    [14] Villa F, Regalado L E, Ramos-Mendieta F et al. Photonic crystal sensor based on surface waves for thin-film characterization[J]. Optics Letters, 27, 646-648(2002).

    [15] Fornasari L, Floris F, Patrini M et al. Demonstration of fluorescence enhancement via Bloch surface waves in all-polymer multilayer structures[J]. Physical Chemistry Chemical Physics, 18, 14086-14093(2016).

    [16] Pirotta S, Xu X G, Delfan A et al. Surface-enhanced Raman scattering in purely dielectric structures via Bloch surface waves[J]. The Journal of Physical Chemistry C, 117, 6821-6825(2013).

    [17] Xiang Y F, Tang X, Fu Y N et al. Trapping metallic particles using focused Bloch surface waves[J]. Nanoscale, 12, 1688-1696(2020).

    [18] Genevet P, Lin J, Kats M A et al. Holographic detection of the orbital angular momentum of light with plasmonic photodiodes[J]. Nature Communications, 3, 1278(2012).

    [19] Allsop T, Arif R, Neal R et al. Photonic gas sensors exploiting directly the optical properties of hybrid carbon nanotube localized surface plasmon structures[J]. Light, Science & Applications, 5, e16036(2016).

    [20] Michelotti F, Rizzo R, Sinibaldi A et al. Design rules for combined label-free and fluorescence Bloch surface wave biosensors[J]. Optics Letters, 42, 2798-2801(2017).

    [21] Augenstein Y, Vetter A, Lahijani B V et al. Inverse photonic design of functional elements that focus Bloch surface waves[J]. Light: Science & Applications, 7, 104(2018).

    [22] Deng C Z, Ho Y L, Clark J K et al. Light switching with a metal-free chiral-sensitive metasurface at telecommunication wavelengths[J]. ACS Photonics, 7, 2915-2922(2020).

    [23] Stella U, Grosjean T, De Leo N et al. Vortex beam generation by spin-orbit interaction with Bloch surface waves[J]. ACS Photonics, 7, 774-783(2020).

    [24] Froehly L, Courvoisier F, Mathis A et al. Arbitrary accelerating micron-scale caustic beams in two and three dimensions[J]. Optics Express, 19, 16455-16465(2011).

    [25] Dubey R, Vosoughi Lahijani B, Kim M S et al. Near-field investigation of Bloch surface wave based 2D optical components[J]. Proceedings of SPIE, 10106, 101061G(2017).

    [26] Kovalevich T, Boyer P, Suarez M et al. Polarization controlled directional propagation of Bloch surface wave[J]. Optics Express, 25, 5710-5715(2017).

    [27] Moharam M G, Gaylord T K, Grann E B et al. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings[J]. Journal of the Optical Society of America A, 12, 1068-1076(1995).

    Tools

    Get Citation

    Copy Citation Text

    Han Jiao, Mengmeng Zhang, Peng Li, Sheng Liu, Jianlin Zhao. Structure Design of Surface Wave Exciting Grating Based on Caustic Theory[J]. Acta Optica Sinica, 2021, 41(23): 2324001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optics at Surfaces

    Received: Apr. 25, 2021

    Accepted: Jun. 11, 2021

    Published Online: Nov. 29, 2021

    The Author Email: Li Peng (pengli@nwpu.edu.cn), Liu Sheng (shengliu@nwpu.edu.cn)

    DOI:10.3788/AOS202141.2324001

    Topics