Acta Optica Sinica, Volume. 42, Issue 16, 1612002(2022)

Microlens Array-Based Spatial Angle Encoding for High-Precision Visual Pose Measurement

Liangliang Mo, Jieji Ren, and Mingjun Ren*
Author Affiliations
  • School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • show less
    Figures & Tables(13)
    Principle of dynamic display by microlens array
    Micrographics array and dynamic display effect. (a) Micrographics array; (b)(c) display patterns at different shooting angles (after perspective transformation)
    Weighted estimation of x-axis and y-axis rotation angles
    Experimental scene. (a) Experimental setup; (b) camera; (c) rotator and microlens array fiducial marker; (d) display of microlens array fiducial marker
    Schematic diagram of viewpoint variation range in angular vector space
    Display patterns at different shooting angles (after perspective transformation). (a) ψ=0.5°,θ=1.5°; (b) ψ=0.5°,θ=2.0°; (c) ψ=0°,θ=1.5°; (d) ψ=1.0°,θ=1.5°
    Pose measurement results. (a) x-axis rotation angle error; (b) y-axis rotation angle error; (c) z-axis rotation angle error; (d) estimation result of translation in x direction; (e) estimation result of translation in y direction; (f) estimation result of translation in z direction
    • Table 1. Comparison of average measurement error of rotation angle by different methods

      View table

      Table 1. Comparison of average measurement error of rotation angle by different methods

      Methodx axisy axis
      MLA+0.06590.0787
      MLA0.12270.1284
      P4P2.30610.6373
    • Table 2. Comparison of average measurement error of rotation angle by OSTU method and maximum information entropy method

      View table

      Table 2. Comparison of average measurement error of rotation angle by OSTU method and maximum information entropy method

      Methodx axisy axis
      OTSU0.06590.0787
      Maximum information entropy0.14090.3985
    • Table 3. Comparison of failure number of rotation angle measurement by two gray threshold segmentation methods

      View table

      Table 3. Comparison of failure number of rotation angle measurement by two gray threshold segmentation methods

      MethodConditionx axisy axis
      OTSUUnweighted00
      Weighted00
      Maximum information entropyUnweighted221
      Weighted116
    • Table 4. Average measurement error of rotation angle under different threshold number

      View table

      Table 4. Average measurement error of rotation angle under different threshold number

      Threshold numberx axisy axis
      10.06590.0787
      20.05450.0856
      30.07330.0860
      40.07070.0838
    • Table 5. Comparison of average measurement error of rotation angle by dense encoding method and linear interpolation method

      View table

      Table 5. Comparison of average measurement error of rotation angle by dense encoding method and linear interpolation method

      Methodx axisy axis
      Dense encoding(ours)0.06590.0787
      Linear interpolation0.48800.4690
    • Table 6. Average Hamming distance at different angle intervals

      View table

      Table 6. Average Hamming distance at different angle intervals

      Angle intervalx axisy axis
      0.13.583.10
      0.27.046.10
      0.310.519.08
      0.413.9211.98
      0.517.4314.83
    Tools

    Get Citation

    Copy Citation Text

    Liangliang Mo, Jieji Ren, Mingjun Ren. Microlens Array-Based Spatial Angle Encoding for High-Precision Visual Pose Measurement[J]. Acta Optica Sinica, 2022, 42(16): 1612002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Instrumentation, Measurement and Metrology

    Received: Jan. 25, 2022

    Accepted: Mar. 21, 2022

    Published Online: Aug. 4, 2022

    The Author Email: Ren Mingjun (renmj@sjtu.edu.cn)

    DOI:10.3788/AOS202242.1612002

    Topics