Laser & Optoelectronics Progress, Volume. 52, Issue 3, 30007(2015)

Progress in Laser Ignition Based on Passively Q-Switched Solid-State Lasers

Yang Lin* and Dong Jun
Author Affiliations
  • [in Chinese]
  • show less
    References(60)

    [1] [1] A M K P Taylor. Science review of internal combustion engines[J]. Energy Policy, 2008, 36(12): 4657-4667.

    [2] [2] S Richardson, M H Mcmillian, S D Woodruff, et al.. Misfire, knock and NOx mapping of a laser spark ignited single cylinder lean burn natural gas engine[C]. Society of Automotive Engineers, 2004, 113: 858-865.

    [3] [3] T X Phuoc. Laser-induced spark ignition fundamental and applications[J]. Optics and Lasers in Engineering, 2006, 44(5): 351-397.

    [4] [4] J D Dale, M D Checkel, P R Smy. Application of high energy ignition systems to engines[J]. Progress in Energy and Combustion Science, 1997, 23(5-6): 379-398.

    [6] [6] M H Morsy. Review and recent developments of laser ignition for internal combustion engines applications[J]. Renewable & Sustainable Energy Reviews, 2012, 16(7): 4849-4875.

    [7] [7] M Weinrotter, D K Srivastava, K Iskra, et al.. Laser ignition of engines-a realistic option[C]. International Conference on Lasers, Applications, and Technologies 2005∶High-Power Lasers and Applications. 2006, 6053: 605316.

    [8] [8] Wang Yuanli, Cheng Xiaobei. The applications of laser-induced spark ignition in the natural gas engine[J]. Vehicle Engine, 2007, 167(1): 2005-2008.

    [9] [9] Ling Ming, Huang Zhongrong, Zhang Jianwen. Development of laser ignition technology for gasoline engine[J]. Internal Combustion Engines. 2013, 164(3): 2011-2014.

    [10] [10] Y K Voron′ko, K A Subbotin, V E Shukshin, et al.. Growth and specroscopic investigations of Yb3+-doped NaGd(MoO4)2 and NaLa(MoO4)2-new promising laser crystals[J]. Opt Mater, 2006, 29(2-3): 246-252.

    [11] [11] H Kopecek, S Charareh, M Lackner, et al.. Laser ignition of methane-air mixtures at high pressures and diagnostics[J]. Journal of Engineering for Gas Turbines and Power-Transactions of the Asme, 2005, 127(1): 213-219.

    [12] [12] M H Morsy, S H Chung. Numerical simulation of front lobe formation in laser-induced spark ignition of CH4/air mixtures[J]. Proceedings of the Combustion Institute, 2002, 29(2): 1613-1619.

    [13] [13] M Weinrotter, H Kopecek, E Wintner, et al.. Application of laser ignition to hydrogen-air mixtures at high pressures[J]. International Journal of Hydrogen Energy, 2005, 30(3): 319-326.

    [14] [14] P D Ronney. Laser versus conventional ignition of flames[J]. Opt Eng, 1994, 33(2): 510-521.

    [15] [15] T X Phuoc, F P White. Laser-induced spark ignition of CH4/air mixtures[J]. Combustion and Flame, 1999, 119(3): 203-216.

    [16] [16] Li Qiang, Wei Jianqin, Xu Cangsu. Phenomenological research of laser-induced spark ignition[J]. Vehicle Engine, 2011, 196(5): 2011-2015.

    [17] [17] B E Forch, A W Miziolek. Oxygen-atom two-photon resonance effects in multiphoton photochemical ignition of premixed H2/O2 flows[J]. Opt Lett, 1986, 11(3): 129-131.

    [18] [18] B E Forch, A W Miziolek. Laser-based ignition of H2O2 and D2O2 premixed gases through resonant multiphoton excitation of H and D atoms near 243 nm[J]. Combustion and Flame, 1991, 85(1-2): 254-262.

    [19] [19] T Y Fan, R L Byer. Diode laser-pumped solid-state lasers[J]. IEEE Journal of Quantum Electronics, 1988, 24(6): 895-912.

    [20] [20] M Ross. YAG laser operation by semiconductor laser pumping[J]. Proceedings of the IEEE, 1968, 56(2): 196-197.

    [21] [21] J Dong, K I Ueda, H Yagi, et al.. Laser-diode pumped self-Q-switched microchip lasers[J]. Opt Rev, 2008, 15(2): 57-74.

    [22] [22] J Dong, J Ma, Y Cheng, et al.. Comparative study on enhancement of self-Q-switched Cr,Yb∶YAG lasers by bonding Yb:YAG ceramic and crystal[J]. Laser Phys Lett, 2011, 8(12): 845-852.

    [23] [23] T X Phuoc. Single-point versus multi-point laser ignition: Experimental measurements of combustion times and pressures[J]. Combustion and Flame, 2000, 122(4): 508-510.

    [24] [24] A M Starik, P S Kuleshov, N S Titova. Laser-initiated ignition of hydrogen-air mixtures[J]. Technical Physics, 2009, 54(3): 354-364.

    [25] [25] G Herd, J Klaus, E Wintner, et al.. Laser ignition-a new concept to use and increase the potentials of gas engines[C]. ASME 2005 Internal Combustion Engine Division Fall Technical Conference (ICEF 2005), 2005. 673-681.

    [26] [26] M H Morsy, Y S Ko, S H Chung. Laser-induced ignition using a conical cavity in CH4-air mixtures[J]. Combustion and Flame, 1999, 119(4): 473-482.

    [27] [27] M Tsunekane, T Inohara, A Ando, et al.. High peak power, passively Q-switched microlaser for ignition of engines[J]. IEEE Journal of Quantum Electronics, 2010, 46(2): 277-284.

    [28] [28] M H N Morsy, Y S Ko, S H Chung, et al.. Laser-induced two-point ignition of premixture with a single-shot laser[J]. Combustion and Flame, 2001, 124(4): 724-727.

    [29] [29] M Weinrotter, H Kopecek, E Wintner. Laser ignition of engines[J]. Laser Phys, 2005, 15(7): 947-953.

    [30] [30] M Weinrotter, H Kopecek, M Tesch, et al.. Laser ignition of ultra-lean methane/hydrogen/air mixtures at high temperature and pressure[J]. Experimental Thermal and Fluid Science, 2005, 29(5): 569-577.

    [31] [31] J E Geusic, H M Marcos, L G V Uitert. Laser oscillations in Nd-doped yttrium aluminum, yttrium gallium and gadolinium garnets[J]. Appl Phys Lett, 1964, 4(10): 182-184.

    [32] [32] D M Andrauskas, C Kennedy. Tetravalent chromium solid-state passive Q switch for Nd∶YAG laser systems[C]. Advanced Solid State Lasers, 1991, 10: 393-397.

    [33] [33] J J Zayhowski, C Dill. Diode-pumped passively Q-switched picosecond microchip lasers[J]. Opt Lett, 1994, 19(18): 1427-1429.

    [34] [34] A Agnesi, S Dell′Acqua, G C Reali. 1.5 Watt passively Q-switched diode-pumped cw Nd∶YAG laser[J]. Opt Commun, 1997, 133(1-6): 211-215.

    [35] [35] H Kofler, J Tauer, G Tartar, et al.. An innovative solid-state laser for engine ignition[J]. Laser Phys Lett, 2007, 4(4): 322-327.

    [36] [36] H Kofler, J Tauer, K Iskra, et al.. Development of a high peak power solid-state laser for engine ignition[C]. J Opt Soc of A, 2008, WB1.

    [37] [37] J G Miao, B S Wang, J Y Peng, et al.. Efficient diode-pumped passively Q-switched laser with Nd∶YAG/Cr∶YAG composite crystal[J]. Optics & Laser Technology, 2008, 40(1): 137-141.

    [38] [38] H X Wang, X Q Yang, S Zhao, et al.. 2 ns pulse, compact and reliable microchip lasers by Nd∶YAG/Cr4+∶YAG composite crystal[J]. Laser Physics, 2009, 19(8): 1824-1827.

    [39] [39] H Sakai, H Kan, T Taira. >1 MW peak power single-mode high-brightness passively Q-switched Nd3 +∶YAG microchip laser[J]. Opt Express, 2008, 16(24): 19891-19899.

    [40] [40] M Tsunekane, T Taira. Compact, high peak power, passively Q-switched micro-laser for ignition of engines[C]. Lasers and Electro-Optics (CLEO), 2008. 1-2.

    [41] [41] M Tsunekane, T Taira. High temperature operation of passively Q-switched, Cr∶YAG/Nd∶YAG micro-laser for ignition of engines[C]. Lasers and Electro-Optics (CLEO), 2009. 1.

    [42] [42] R Bhandari, T Taira. >6 MW peak power at 532 nm from passively Q-switched Nd∶YAG/Cr4 +∶YAG microchip laser[J]. Opt Express, 2011, 19(20): 19135-19141.

    [43] [43] J Dong, A Shirakawa, K Ueda, et al.. Efficient Yb3 +∶Y3Al5O12 ceramic microchip lasers[J]. Appl Phys Lett, 2006, 89(9): 091114.

    [44] [44] N Pavel, M Tsunekane, K Kanehara, et al.. Composite all-ceramics, passively Q-switched Nd∶YAG/Cr4+∶YAG monolithic micro-laser with two-beam output for multi-point ignition[C]. Lasers and Electro-Optics (CLEO), 2011. 1-2.

    [45] [45] N Pavel, M Tsunekane, T Taira. Composite, all-ceramics, high-peak power Nd∶YAG/Cr4+∶YAG monolithic micro-laser with multiple-beam output for engine ignition[J]. Opt Express, 2011, 19(10): 9378-9384.

    [46] [46] O Sandu, G Salamu, N Pavel, et al.. High-peak power, passively Q-switched, composite, all-polycrystalline ceramic Nd∶YAG/Cr4+∶YAG lasers[J]. Quantum Electronics, 2012, 42(3): 211.

    [47] [47] W F Kruoke, L L Chase. Ground state depleted (GSD) solid state lasers∶ principles, characteristics, and scaling[C]. High Power and Solid Lasers II, 1989, 1040: 68-83.

    [48] [48] D S Sumida, T Y Fan. Effect of radiation trapping on fluorescence lifetime and emissioncross section measurements in solid-state laser media[J]. Opt Lett, 1994, 19(17): 1343-1345.

    [49] [49] T Y Fan. Heat generation in Nd∶YAG and Yb∶YAG[J]. IEEE Journal of Quantum Electronics, 1993, 29(6): 1457-1459.

    [50] [50] J Dong, M Bass, Y Mao, et al.. Dependence of the Yb3+ emission cross section and lifetime on temperature and concentration in yttrium aluminum garnet[J]. J Opt Soc Am B, 2003, 20(9): 1975-1979.

    [51] [51] T Taira, J Saikawa, T Kobayashi, et al.. Diode-pumped tunable Yb∶YAG miniature lasers at room temperature: modeling and experiment[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1997, 3(1): 100-104.

    [52] [52] J Dong, P Deng, Y Liu, et al.. Passively Q-switched Yb∶YAG laser with Cr4 +∶YAG as the saturable absorber[J]. Appl Opt, 2001, 40(24): 4303-4307.

    [53] [53] J Dong, A Shirakawa, K Ueda, et al.. Near-diffraction-limited passively Q-switched Yb∶Y3Al5O12 ceramic lasers with peak power >150 kW[J]. Appl Phys Lett, 2007, 90(13): 131105.

    [54] [54] J Dong, A Shirakawa, K Ueda, et al.. Ytterbium and chromium doped composite Y3Al5O12 ceramics self-Q-switched laser[J]. Appl Phys Lett, 2007, 90(19): 191106.

    [55] [55] J Dong, K Ueda, A Saikawa, et al.. Composite Yb∶YAG/Cr4+∶YAG ceramics picosecond microchip lasers[J]. Opt Express, 2007, 15(22): 14516-14523.

    [56] [56] M Tsunekane, T Taira. High peak power passively Q-switched Yb∶YAG micro-lasers[C]. Lasers and Electro-Optics (CLEO), 2012. 1-2.

    [57] [57] M Tsunekane, T Taira. High peak power, passively Q-switched Yb∶YAG/Cr∶YAG micro-lasers[J]. IEEE Journal of Quantum Electronics, 2013, 49(5): 454-461.

    [58] [58] J Dong, G Y Wang, Y Cheng. Highly efficient passively Q-switched Yb∶YAG microchip lasers under high intensity laserdiode pumping[J]. Laser Phy, 2013, 23(3): 035802.

    [59] [59] J Dong, Y Y Ren, G Y Wang, et al.. Efficient laser performance of Yb∶Y3Al5O12/Cr4 +∶Y3Al5O12 composite crystals[J]. Laser Phys Lett, 2013, 10(10): 105817.

    [60] [60] J Dong, Y Y Ren, H H Cheng. >1 MW peak power, an efficient Yb∶YAG/Cr4+∶YAG composite crystal passively Q-switched laser[J]. Laser Phys, 2014, 24(5): 055801.

    CLP Journals

    [1] Li Long, Pan Xiaorui, Geng Yingge. Temperature Field of Nd∶YAG Microchip Heat Capacity Laser End-Pumped by LD[J]. Laser & Optoelectronics Progress, 2017, 54(12): 121404

    [2] Zhang Mingming, Bai Shengchuang, Dong Jun. Advances in Ince-Gaussian Modes Laser[J]. Laser & Optoelectronics Progress, 2016, 53(2): 20002

    Tools

    Get Citation

    Copy Citation Text

    Yang Lin, Dong Jun. Progress in Laser Ignition Based on Passively Q-Switched Solid-State Lasers[J]. Laser & Optoelectronics Progress, 2015, 52(3): 30007

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Aug. 20, 2014

    Accepted: --

    Published Online: Feb. 10, 2015

    The Author Email: Lin Yang (liny234@163.com)

    DOI:10.3788/lop52.030007

    Topics