High Power Laser Science and Engineering, Volume. 9, Issue 4, 04000e57(2021)

Free electron lasers driven by plasma accelerators: status and near-term prospects

C. Emma1、*, J. Van Tilborg2、*, R. Assmann3, S. Barber2, A. Cianchi4, S. Corde5, M. E. Couprie6, R. D’Arcy3, M. Ferrario4, A. F. Habib7, B. Hidding7, M. J. Hogan1, C. B. Schroeder2, A. Marinelli1, M. Labat6, R. Li8, J. Liu8, A. Loulergue6, J. Osterhoff3, A. R. Maier3, B. W. J. McNeil9,10, and W. Wang8
Author Affiliations
  • 1SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
  • 2BELLA Center, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
  • 3Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
  • 4INFN-LNF, 00044 Frascati, Italy
  • 5LOA, ENSTA Paris, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91762 Palaiseau, France
  • 6Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, 91192 Gif-sur-Yvette, France
  • 7Scottish Centre for the Application of Plasma-Based Accelerators SCAPA, Department of Physics, University of Strathclyde, Scottish Universities Physics Alliance SUPA, Glasgow G1 1XQ, UK
  • 8Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 9Department of Physics, University of Strathclyde, Scottish Universities Physics Alliance SUPA, Glasgow G1 1XQ, UK
  • 10Cockcroft Institute, Warrington WA4 4AD, UK
  • show less
    Figures & Tables(10)
    Schematic of the FACET-II experimental area with the planned location of an additional small chicane and radiation diagnostic to be used for X-FEL experiments. The simulated longitudinal phase space evolution shows the compression of the electron beam to attosecond duration with percent-level bunching at XUV/soft X-ray wavelengths.
    COXINEL electron and photon beam measurements compared to simulations. Left: Electron beam spectrometer measurements and transverse distributions along the screens (top: measurements; bottom: simulations using the measured electron beam distribution as an input). Right: Undulator radiation transverse pattern (measured with a CCD camera and modeled using the transported electron beam without electron energy selection).
    Average power as a function of the number of drive bunches per second at a range of existing or planned plasma-wakefield research facilities (bottom left corner) and photon-science and high-energy-physics user facilities (top right). The blue arrow represents the leap towards a beam-driven plasma-based FEL by using high-average-power upgrades to FLASHForward as a gateway.
    Schematic view of the LUX beamline after upgrade. For simplicity, diagnostics, such as electron beam profile monitors, are not shown.
    The SIOM-FEL setup with planar undulators and transverse gradient undulators.
    Plasma-based X-FEL and other ultrabright light sources options as summarized in the UK X-FEL science case[81" target="_self" style="display: inline;">81].
    Schematic layout of the BELLA Center’s Laser-Plasma Accelerator FEL beamline. The inset shows the electron beam beta function (beam size squared) inside the undulator in (left) the optimally matched strong-focusing undulator, (middle) a mismatched strong-focusing undulator, and (right) an optimized natural-focusing undulator. The strong-focusing undulator allows for higher beam density over the full undulator length.
    Layout of the EuPRAXIA@SPARCLAB infrastructure.
    • Table 1. Summary of parameters for the facilities discussed in the text utilizing a laser-driven approach to plasma-FEL operation.

      View table
      View in Article

      Table 1. Summary of parameters for the facilities discussed in the text utilizing a laser-driven approach to plasma-FEL operation.

      COXINELDESY-LUXSIOMLBNL-BELLA
      Charge density [pC/MeV]0.541–52
      Repetition rate [Hz]1–1011–55
      Mean energy [GeV]0.18–0.40.30.840.1–0.3
      Slice energy spread RMS [%]NA0.50.24–0.40.2–1
      Charge [pC]NA508–2525
      Emittance [mm·mrad]11.5 (horz.), 0.3 (vert.)0.40.3–1
      FEL wavelength [nm]UV-VUV1006–1080
      Undulator technologyCryo-PMUCryo-PMUPlanar and TGUPlanar + strong focusing
      FEL operation modesDecompression + seedingDecompression + SASESASE, transverse decompressionDecompression + seeding
      Key challenge pursuedDemonstrate FEL gainDemonstrate FEL gainDemonstrate FEL gainDemonstrate FEL gain
    • Table 2. Summary of parameters for the facilities discussed in the text utilizing a beam-driven approach to plasma-FEL operation. We note that both Strathclyde and EuPRAXIA are also aiming to study multiple plasma-based FEL approaches including hybrid LWFA–PWFA configurations. Facilities/groups labeled with an asterisk have not yet begun experimental operation and for those the target parameters have been listed.

      View table
      View in Article

      Table 2. Summary of parameters for the facilities discussed in the text utilizing a beam-driven approach to plasma-FEL operation. We note that both Strathclyde and EuPRAXIA are also aiming to study multiple plasma-based FEL approaches including hybrid LWFA–PWFA configurations. Facilities/groups labeled with an asterisk have not yet begun experimental operation and for those the target parameters have been listed.

      SLAC FACET-II*DESY - FLASHForwardStrathclyde*EuPRAXIA at SPARC LAB*
      Peak current [kA]10–50011–1004
      Repetition rate [Hz]110 (10 ${}^4$ after future upgrades)Variable10
      Mean energy [GeV]5–1011–51–5
      Slice energy spread RMS [%]0.1–10.150.01–20.75
      Charge [pC]10–1001000.1–50030
      Emittance [mm·mrad]1–101–200.01–11
      FEL wavelength [nm]10–50Soft X-raysHard X-rays4
      FEL operation modesCompression + pre-bunchingSASEMultipleSASE
      Key challenge pursuedAttosecond FEL pulsesHigh average power FELHard X-ray FEL gainPlasma-FEL user facility
    Tools

    Get Citation

    Copy Citation Text

    C. Emma, J. Van Tilborg, R. Assmann, S. Barber, A. Cianchi, S. Corde, M. E. Couprie, R. D’Arcy, M. Ferrario, A. F. Habib, B. Hidding, M. J. Hogan, C. B. Schroeder, A. Marinelli, M. Labat, R. Li, J. Liu, A. Loulergue, J. Osterhoff, A. R. Maier, B. W. J. McNeil, W. Wang. Free electron lasers driven by plasma accelerators: status and near-term prospects[J]. High Power Laser Science and Engineering, 2021, 9(4): 04000e57

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue: XFELS

    Received: Jul. 15, 2021

    Accepted: Aug. 27, 2021

    Posted: Aug. 30, 2021

    Published Online: Mar. 4, 2022

    The Author Email: C. Emma (cemma@slac.stanford.edu), J. Van Tilborg (jvantilborg@lbl.gov)

    DOI:10.1017/hpl.2021.39

    Topics