Acta Photonica Sinica, Volume. 45, Issue 3, 317001(2016)
Iterative Inversion of Optical Property Parametersof Biological Tissue Based on Diffuse Reflectance Model
[2] [2] YANG Li, GAO Mei-ting. The study of support vector machine on the non-destructive measurement of tissueoptical parameters[J].Laser Journal, 2014, 35(11): 68-71.
[3] [3] WANG Xi-cang, HUA Zhen, MENG Zhao-kun. Time domain model of light transport in multi-layer matched biological tissue[J]. Acta Photonica Sinica, 2006, 35(7): 1060-1064.
[4] [4] QIN J, LU R, PENG Y. Prediction ofappleinternalquality using spectral absorption and scattering properties[J]. Transactions of the ASABE, 2009, 52(2): 499-507.
[5] [5] FARRELL T J, PATTERSON M S, WILSON B. A diffusion-theory model of spatially-resolved,steady-state diffuse reflectance for the noninvasive determination of tissue optical propertiesvivo[J]. Medical Physics,1992, 19(4): 879-888.
[6] [6] KIENLE A, PATTERSON M S. Improved solutions of the steady-state and the time-resolveddiffusion equations for reflectance from a semi-infinite turbid medium[J]. Journal of the Optical Society of America. A, 1997, 14(1-3): 246-254.
[7] [7] ZHANG Xiao-juan, ZHOU Qing-jun, YANG Wei. Study of SP3 for spatially resolved diffuse reflectance close to light source[J]. Acta Physica Sinica, 2012, 61(3): 034202.
[8] [8] INSEOK S, CAROLE K H, VASAN V. Radiative transport in the delta-P1 approximation for semi-infinite turbid media[J]. Medical Physics, 2008, 35(2): 681-693
[9] [9] CEN H, LU R, DOLAN K. Optimization of inverse algorithm for estimating the optical properties of biological meterials using spatially resolved diffuse reflectance[J]. Inverse Problems in Science and Engineering, 2010, 18(6): 853-872.
[10] [10] HE Chun-liu, ZHU Qi-bing, HUANG Min. Inversion of the optical properties parameters of biological tissue based on moment tansformation[J]. Acta Photonica Sinica, 2015, 44(2): 16-22.
[11] [11] CEN H, LU R. Optimization of the hyper spectral imaging-based spatially-resolved system for measuring theoptical properties of biological materials[J]. Optics Express, 2010, 18(16): 17412-17432.
[12] [12] WANG Yan-qiu, LIN Ling, LI Gang, et al. Theory and technology of nonde structive measurement for biological tissue opticalproperties[J]. Optical Technique, 2001, 27(4): 355-358.
[13] [13] HASKELL R C, SVAASAND L O, TSAY T T, et al. Boundary conditionsfor the diffusion equation in radiative transfer[J]. Journal of the Optical Society of America. A, 1994, 11(10): 2727-2741.
[14] [14] THOMAS FC, LI Y Y. On the convergence of interiro-reflective Newton methods for nonlinear minimization subject to bounds[J]. Mathematical Programming, 1994, 67(1-3): 189-224.
[15] [15] CUBEDDU R, D'ANDREA C, PIFFERI A, et al. Time-resolved reflectance spectroscopy applied to the nondestructive monitoring of the internal optical properties in apples[J]. Applied Spectroscopy, 2001, 55(10): 1368-1374.
[16] [16] WANG Ji-hui, DING Yan, CHEN Song-lin, et al. Transport for photon beams of finite size in biological tissues based on Monte Carlo[J].Acta Photonica Sinica, 2014, 43(s1): 167-171.
[17] [17] Foundation item: The National Natural Science Foundation of China (Nos.61275155, 61271384)
HAYAKAWA C K, HILL B Y, YOU J S, et al. Use of the delta-P1approximation for recovery ofoptical absorption, scattering, and asymmetrycoefficients in turbid media[J].Applied Optics, 2004, 43(24): 4677-4684.
Get Citation
Copy Citation Text
WANG Wei, ZHU Qi-bing, HUANG Min. Iterative Inversion of Optical Property Parametersof Biological Tissue Based on Diffuse Reflectance Model[J]. Acta Photonica Sinica, 2016, 45(3): 317001
Received: Aug. 10, 2015
Accepted: --
Published Online: Apr. 1, 2016
The Author Email: Wei WANG (wangwei_jndx@163.com)