Infrared and Laser Engineering, Volume. 53, Issue 11, 20240290(2024)

Intelligent suppression of infrared dim and small target detection method under complex space backgrounds

Shiran GE1, Ruikai LIU2, Na LI1、*, and Huijie ZHAO1
Author Affiliations
  • 1Institute of Artificial Intelligence, Beihang University, Beijing 100191, China
  • 2Beijing Institute of Remote Sensing Equipment, Beijing 100854, China
  • show less
    Figures & Tables(12)
    A pipeline of infrared dim and small target detection method based on complex backgrounds intelligent suppression (The three-dimensional graph in the figure shows the grayscale value of each pixel in the image)
    (a) Infrared scene-optimized encoder-decoder background suppression network model; (b) Multi-level fusion mechanism; (c) Residual fusion module
    Residual unit structure diagram
    Infrared weak and small target simulation data in typical complex interference scenarios
    Background suppression and target detection results of 6 detection methods in complex interference scenario
    Target detection results of the proposed method in various complex interference scenarios. (a) Original images; (b) Ground-truth images
    • Table 1. Infrared scene optimization encoding and decoding background suppression network model parameters

      View table
      View in Article

      Table 1. Infrared scene optimization encoding and decoding background suppression network model parameters

      LayersFilter sizeFilter numberStride
      Input---
      Conv17×7321
      Conv23×3642
      Conv33×31282
      RFM$ \left[\begin{array}{l}3 \times 3 \\3 \times 3\end{array}\right] \times 8 $$ \left[\begin{array}{l}64 \\64\end{array}\right] \times 8 $$ \left[\begin{array}{l}1 \\1\end{array}\right] \times 8 $
      Deconv13×3642
      Mixing layer 1Conv2+Deconv1
      Deconv23×3322
      Mixing layer 2Conv1+Deconv2
      Conv223×311
      Residual offsetInput-Conv22
      Output---
    • Table 2. Three groups of test data parameters

      View table
      View in Article

      Table 2. Three groups of test data parameters

      SequencesNumber of framesImage resolutionTarget size
      1600256×2562×2
      2675256×2562×2
      3800256×2562×2
      4620256×2562×2
      5700256×2562×2
      6600256×2562×2
    • Table 3. Background standard deviation \begin{document}$ {STD}_{{\mathrm{B}}} $\end{document} on six methods in six scenarios

      View table
      View in Article

      Table 3. Background standard deviation \begin{document}$ {STD}_{{\mathrm{B}}} $\end{document} on six methods in six scenarios

      MethodSequence 1Sequence 2Sequence 3Sequence 4Sequence 5Sequence 6
      Original images20.146320.049220.137420.090616.8078105.1225
      Sobel gradient165.8147169.3257176.5302186.1344140.0292182.2332
      Median filtering7.36907.36447.36917.36666.825540.2364
      Bilateral filtering7.53427.53357.54537.55246.726843.1227
      Morphological6.38376.38116.38406.38196.281648.2588
      RLCM5.65265.34245.56355.44325.288628.5535
      Our method1.84501.85001.85541.86392.992722.4826
    • Table 4. Target signal-to-noise ratio \begin{document}$ SNR $\end{document} on six methods in six scenarios

      View table
      View in Article

      Table 4. Target signal-to-noise ratio \begin{document}$ SNR $\end{document} on six methods in six scenarios

      MethodSequence 1Sequence 2Sequence 3Sequence 4Sequence 5Sequence 6
      Original images2.26864.83477.36049.92196.69911.8745
      Sobel gradient3.98249.142013.865518.002910.16262.3422
      Median filtering5.707112.437219.193626.003115.56266.6526
      Bilateral filtering6.245612.496218.720724.938215.88186.8235
      Morphological7.388315.206923.043530.880816.22146.5622
      RLCM8.086516.908129.641428.621320.52138.2312
      Our method25.189754.254182.7290110.025729.962310.7003
    • Table 5. Detection rates \begin{document}$ {P}_{{\mathrm{d}}} $\end{document} on six methods in six scenarios

      View table
      View in Article

      Table 5. Detection rates \begin{document}$ {P}_{{\mathrm{d}}} $\end{document} on six methods in six scenarios

      MethodSequence 1Sequence 2Sequence 3Sequence 4Sequence 5Sequence 6
      Sobel gradient0.26110.42330.52370.70110.52360.4023
      Median filtering0.90410.89550.87580.91950.82130.7852
      Bilateral filtering0.96500.96020.98440.96520.85280.8021
      Morphological0.96520.96620.94800.95320.84670.8215
      RLCM0.96880.97020.96240.97080.90170.8826
      Our method0.99860.99870.99880.99890.94860.9125
    • Table 6. False alarm rates \begin{document}$ {F}_{{\mathrm{a}}} $\end{document} on six methods in six scenarios

      View table
      View in Article

      Table 6. False alarm rates \begin{document}$ {F}_{{\mathrm{a}}} $\end{document} on six methods in six scenarios

      MethodSequence 1Sequence 2Sequence 3Sequence 4Sequence 5Sequence 6
      Sobel gradient6.18244.51950.91150.26124.82145.2369
      Median filtering4.89653.75820.66460.13873.25923.6245
      Bilateral filtering3.51452.51940.62240.13102.86883.6387
      Morphological4.25713.03480.45240.05602.18222.8900
      RLCM3.23752.85220.32180.06282.15361.8249
      Our method0.18240.08820.02070.00130.08560.9570
    Tools

    Get Citation

    Copy Citation Text

    Shiran GE, Ruikai LIU, Na LI, Huijie ZHAO. Intelligent suppression of infrared dim and small target detection method under complex space backgrounds[J]. Infrared and Laser Engineering, 2024, 53(11): 20240290

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: 图像处理

    Received: Jul. 4, 2024

    Accepted: --

    Published Online: Dec. 13, 2024

    The Author Email: LI Na (lina_17@buaa.edu.cn)

    DOI:10.3788/IRLA20240290

    Topics