Journal of Synthetic Crystals, Volume. 52, Issue 7, 1169(2023)

Research Progress of Sesquioxide Crystals and Its Laser Performances in the Band of 1~3 μm

WANG Mengmeng1,*... YIN Yanru1, DING Xiaoyuan1, ZHANG Jing2, FU Xiuwei1, JIA Zhitai1,3 and TAO Xutang1 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(117)

    [1] [1] ZINKEVICH M. Thermodynamics of rare earth sesquioxides[J]. Progress in Materials Science, 2007, 52(4): 597-647.

    [2] [2] TANG M, VALDEZ J A, LU P, et al. A cubic-to-monoclinic structural transformation in the sesquioxide Dy2O3 induced by ion irradiation[J]. Journal of Nuclear Materials, 2004, 328(1): 71-76.

    [3] [3] WANG L, PAN Y X, DING Y, et al. High-pressure induced phase transitions of Y2O3 and Y2O3∶Eu3+[J]. Applied Physics Letters, 2009, 94(6): 061921.

    [4] [4] HUSSON E, PROUST C, GILLET P, et al. Phase transitions in yttrium oxide at high pressure studied by Raman spectroscopy[J]. Materials Research Bulletin, 1999, 34(12/13): 2085-2092.

    [5] [5] PETERS R, PETERMANN K, HUBER G. Growth technology and laser properties of Yb-doped sesquioxides[M]//Crystal Growth Technology. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010: 267-282.

    [6] [6] KOOPMANN P. Thulium- and holmium-doped sesquioxides for 2 μm Lasers [M]. 1st ed. Aachen: Shaker, 2012

    [7] [7] TOKURAKAWA M, SHIRAKAWA A, UEDA K, et al. Ultrashort pulse generation from diode pumped mode-locked Yb3+: sesquioxide single crystal lasers[J]. Optics Express, 2011, 19(4): 2904-2909.

    [8] [8] ZELMON D E, NORTHRIDGE J M, HAYNES N D, et al. Temperature-dependent Sellmeier equations for rare-earth sesquioxides[J]. Applied Optics, 2013, 52(16): 3824-3828.

    [9] [9] BEIL K, SARACENO C J, SCHRIBER C, et al. Yb-doped mixed sesquioxides for ultrashort pulse generation in the thin disk laser setup[J]. Applied Physics B, 2013, 113(1): 13-18.

    [10] [10] MCMILLEN C D, SANJEEWA L D, MOORE C A, et al. Crystal growth and phase stability of Ln∶Lu2O3 (Ln=Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb) in a higher-temperature hydrothermal regime[J]. Journal of Crystal Growth, 2016, 452: 146-150.

    [11] [11] MCMILLEN C, THOMPSON D, TRITT T, et al. Hydrothermal single-crystal growth of Lu2O3 and lanthanide-doped Lu2O3[J]. Crystal Growth & Design, 2011, 11(10): 4386-4391.

    [12] [12] SPEZIA G. Contribuzioni sperimentali alla cristallogenesi del quarzo [J]. Atti Accad Sci Torino, 1906, 41: 158-65.

    [13] [13] MCMILLEN C D, KOLIS J W. Bulk single crystal growth from hydrothermal solutions[J]. Philosophical Magazine, 2012, 92(19/20/21): 2686-2711.

    [14] [14] MC MILLEN C D, KOLIS J W. Hydrothermal single crystal growth of Sc2O3 and lanthanide-doped Sc2O3[J]. Journal of Crystal Growth, 2008, 310(7/8/9): 1939-1942.

    [15] [15] MANN M, KOLIS J. Hydrothermal crystal growth of yttrium and rare earth stabilized hafnia[J]. Journal of Crystal Growth, 2010, 312(3): 461-465.

    [16] [16] KOLAMBAGE M T K, MCMILLEN C D, MCGUIRE M A, et al. Hydrothermal synthesis of lanthanide rhenium oxides: structures and magnetism of Ln2Re2O7(OH) (Ln=Pr, Nd) and Ln4Re2O11 (Ln=Eu, Tb)[J]. Journal of Solid State Chemistry, 2019, 275: 149-158.

    [17] [17] VEBER P, VELZQUEZ M, JUBERA V, et al. Flux growth of Yb3+-doped RE2O3 (RE=Y, Lu) single crystals at half their melting point temperature[J]. CrystEngComm, 2011, 13(16): 5220.

    [18] [18] DRUON F, VELZQUEZ M, VEBER P, et al. Laser demonstration with highly doped Yb∶Gd2O3 and Yb∶Y2O3 crystals grown by an original flux method[J]. Optics Letters, 2013, 38(20): 4146-4149.

    [19] [19] VEBER P, VELZQUEZ M, GADRET G, et al. Flux growth at 1230 ℃ of cubic Tb2O3 single crystals and characterization of their optical and magnetic properties[J]. CrystEngComm, 2015, 17(3): 492-497.

    [21] [21] VEBER P, VELAZQUEZ M, DOUISSARD P A, et al. Flux growth and physical properties characterizations of Y1 866Eu0 134O3 and Lu156Gd041Eu003O3 single crystals[J]. Optical Materials Express, 2015, 6(1): 207.

    [22] [22] FORNASIERO L, MIX E, PETERS V, et al. New oxide crystals for solid state lasers[J]. Crystal Research and Technology, 1999, 34(2): 255-260.

    [23] [23] FORNASIERO L, MIX E, PETERS V, et al. Czochralski growth and laser parameters of RE3+-doped Y2O3 and Sc2O3[J]. Ceramics International, 2000, 26(6): 589-592.

    [24] [24] KRNKEL C, UVAROVA A, HAURAT , et al. Czochralski growth of mixed cubic sesquioxide crystals in the ternary system Lu2O3-Sc2O3-Y2O3[J]. Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials, 2021, 77(4): 550-558.

    [25] [25] SUZUKI A, KALUSNIAK S, et al. Spectroscopy and 2.1 μm laser operation of Czochralski-grown Tm3+∶YScO3 crystals[J]. Optics Express, 2022, 30(23): 42762.

    [27] [27] LABELLE H E. EFG, the invention and application to sapphire growth[J]. Journal of Crystal Growth, 1980, 50(1): 8-17.

    [28] [28] YIN Y R, WANG G J, JIA Z T, et al. Controllable and directional growth of Er∶Lu2O3 single crystals by the edge-defined film-fed technique[J]. CrystEngComm, 2020, 22(39): 6569-6573.

    [29] [29] ZHANG M, YIN Y R, ZHANG L, et al. Self-Q-switched Er∶Lu2O3 laser at 2.74 μm[J]. Applied Optics, 2023, 62(6): 1462-1466.

    [33] [33] PETERS V, BOLZ A, PETERMANN K, et al. Growth of high-melting sesquioxides by the heat exchanger method[J]. Journal of Crystal Growth, 2002, 237/238/239: 879-883.

    [34] [34] PETERS V. Growth and spectroscopy of ytterbium-doped sesquioxides [D]. Hamburg: University of Hamburg, 2001.

    [35] [35] PETERS R, KRNKEL C, PETERMANN K, et al. Crystal growth by the heat exchanger method, spectroscopic characterization and laser operation of high-purity Yb: Lu2O3[J]. Journal of Crystal Growth, 2008, 310(7/8/9): 1934-1938.

    [36] [36] KOOPMANN P, PETERS R, PETERMANN K, et al. Crystal growth, spectroscopy, and highly efficient laser operation of thulium-doped Lu2O3 around 2 μm[J]. Applied Physics B, 2011, 102(1): 19-24.

    [37] [37] LOIKO P A, YUMASHEV K V, SCHDEL R, et al. Thermo-optic properties of Yb∶Lu2O3 single crystals[J]. Applied Physics B, 2015, 120(4): 601-607.

    [38] [38] HU K W, ZHENG L L, ZHANG H. Control of interface shape during high melting sesquioxide crystal growth by HEM technique[J]. Journal of Crystal Growth, 2018, 483: 175-182.

    [41] [41] PETERMANN K, FORNASIERO L, MIX E, et al. High melting sesquioxides: crystal growth, spectroscopy, and laser experiments [J]. Optical Materials, 2002, 19(1): 67-71.

    [42] [42] ZHENG J Q, LIU C J, YU H H, et al. Single crystal preparation and luminescent properties of Lu2O3∶Eu scintillator by vertical bridgman method[J]. Crystal Research and Technology, 2022, 57(2): 2100120.

    [43] [43] FUKABORI A, CHANI V, KAMADA K, et al. Growth of Y2O3, Sc2O3 and Lu2O3 crystals by the micro-pulling-down method and their optical and scintillation characteristics [J]. Journal of Crystal Growth, 2011, 318(1): 823-830.

    [44] [44] NOVOSELOV A, MUN J H, SIMURA R, et al. Micro-pulling-down: a viable approach to the crystal growth of refractory rare-earth sesquioxides[J]. Inorganic Materials, 2007, 43(7): 729-734.

    [45] [45] MUN J H, NOVOSELOV A, YOSHIKAWA A, et al. Growth of Yb3+-doped Y2O3 single crystal rods by the micro-pulling-down method[J]. Materials Research Bulletin, 2005, 40(8): 1235-1243.

    [46] [46] GUZIK M, PEJCHAL J, YOSHIKAWA A, et al. Structural investigations of Lu2O3 as single crystal and polycrystalline transparent ceramic[J]. Crystal Growth & Design, 2014, 14(7): 3327-3334.

    [47] [47] KECK P H, GOLAY M J E. Crystallization of silicon from a floating liquid zone[J]. Physical Review, 1953, 89(6): 1297.

    [48] [48] GASSON D B, COCKAYNE B. Oxide crystal growth using gas lasers[J]. Journal of Materials Science, 1970, 5(2): 100-104.

    [51] [51] SHI J J, LIU B, WANG Q G, et al. Crystal growth, spectroscopic characteristics, and Judd-Ofelt analysis of Dy∶Lu2O3 for yellow laser[J]. Chinese Physics B, 2018, 27(7): 077802.

    [52] [52] ZHUANG L C, FENG H, HUANG S M, et al. The luminescent properties comparison of RE2O3∶Eu(RE=Lu, Y, Sc) with high and low Eu doping concentrations[J]. Journal of Alloys and Compounds, 2019, 781: 302-307.

    [53] [53] HOU W T, ZHAO H Y, LI N, et al. Growth and spectroscopic properties of Er∶Lu2O3 crystal grown by floating zone method[J]. Materials Research Express, 2019, 6(6): 066203.

    [54] [54] LI S M, ZHANG L H, TAN X J, et al. Growth, structure, and spectroscopic properties of a Tm3+, Ho3+ co-doped Lu2O3 crystal for ~2.1 μm[J]. Optical Materials, 2019, 96: 109277.

    [55] [55] LIU W Y, LU D Z, PAN S L, et al. Ligand engineering for broadening infrared luminescence of Kramers ytterbium ions in disordered sesquioxides[J]. Crystal Growth & Design, 2019, 19(7): 3704-3713.

    [56] [56] UVAROVA A, KALUSNIAK S, GUGUSCHEV C, et al. OFZ-growth of Yb∶(Sc, Y)2O3 for 1 μm lasers[C]//2021 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). June 21-25, 2021, Munich, Germany. IEEE, 2021: 1.

    [57] [57] CHEN G Z, LI S M, FANG Q N, et al. Growth and spectroscopy of Er∶LuYO3 single crystal[J]. Journal of Luminescence, 2021, 239: 118347.

    [58] [58] WANG L, LIU X D, LI J S, et al. Effect of rare-earth (RE) ionic radius on the dielectric properties of Sr99%RE1%TiO3 (RE=La, Nd, Yb) single crystals[J]. CrystEngComm, 2023, 25(1): 95-107.

    [59] [59] GRUBER J B, SARDAR D K, NASH K L, et al. Comparative study of the crystal-field splitting of trivalent neodymium energy levels in polycrystalline ceramic and nanocrystalline yttrium oxide[J]. Journal of Applied Physics, 2007, 102(2): 023103.

    [60] [60] GRUBER J B, SARDAR D K, NASH K L, et al. Spectral analysis of synthesized nanocrystalline aggregates of Er3+∶Y2O3[J]. Journal of Applied Physics, 2007, 101(11): 113116.

    [63] [63] HERRICK C C, BEHRENS R G. Growth of large uraninite and thorianite single crystal from the melt using a cold-crucible technique[J]. Journal of Crystal Growth, 1981, 51(2): 183-189.

    [64] [64] XU J Y, LEI X Y, JIANG X, et al. Industrial growth of yttria-stabilized cubic zirconia crystals by skull melting process[J]. Journal of Rare Earths, 2009, 27(6): 971-974.

    [65] [65] BORIK M A, BREDIKHIN S I, KULEBYAKIN A V, et al. Melt growth, structure and properties of (ZrO2)1-x(Sc2O3)x solid solution crystals (x=0.035 0.11)[J]. Journal of Crystal Growth, 2016, 443: 54-61.

    [66] [66] OSIKO V V, BORIK M A, LOMONOVA E E. Synthesis of refractory materials by skull melting technique[M]//DHANARAJ G, BYRAPPA K, PRASAD V, et al. Springer Handbook of Crystal Growth. Berlin, Heidelberg: Springer, 2010: 433-477.

    [67] [67] ZHANG N, YIN Y Q, ZHANG J A, et al. Optimized growth of high length-to-diameter ratio Lu2O3 single crystal fibers by the LHPG method[J]. CrystEngComm, 2021, 23(7): 1657-1662.

    [70] [70] BERARD M F, WIRKUS C D, WILDER D R. Diffusion of oxygen in selected monocrystalline rare earth oxides[J]. Journal of the American Ceramic Society, 1968, 51(11): 643-647.

    [71] [71] PETERS V. Spektroskopie und lasereigenschaften erbium-und praseodymdotierter hochschmelzender oxide[D]. Hamburg: University of Hamburg, 1998.

    [72] [72] MLLER V. Characterisierung und optimierung von hochdotierten Yb∶YAG laserkristallen[D]. Hamburg: University of Hamburg, 2001.

    [75] [75] BOLZ A. Energietransfer in ytterbium-dotierten sesquoxiden[D]. Hamburg: University of Hamburg, 2001.

    [76] [76] KOELLING S. Untersuchungsbericht ILP 6-2000[D]. Hamburg: Technical University Hamburg, 2000.

    [77] [77] HOSKINS R H, SOFFER B H. Stimulated emission from Y2O3∶Nd3+[J]. Applied Physics Letters, 1964, 4(1): 22-23.

    [78] [78] IKESUE A, AUNG Y L. Synthesis and performance of advanced ceramic lasers[C]. Proceedings of the 2007 Conference on Lasers and Electro-Optics (CLEO), F 6-11 May 2007.

    [79] [79] KRNKEL C. Rare-earth-doped sesquioxides for diode-pumped high-power lasers in the 1-, 2-, and 3-μm spectral range[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(1): 250-262.

    [80] [80] FAN T Y. Optimizing the efficiency and stored energy in quasi-three-level lasers[J]. IEEE Journal of Quantum Electronics, 1992, 28(12): 2692-2697.

    [81] [81] PETERS V, PETERMANN K, BOLZ A, et al. Ytterbium-doped sesquioxides as host materials for high-power laser applications[C]. Proceedings of the Laser 2001 - World of Photonics 15th International Conference on Lasers and Electrooptics in Europe, Munich, F 2001/06/18, 2001. Optica Publishing Group.

    [82] [82] PETERS R. Ytterbium-dotierte sesquioxide als hocheffiziente lasermaterialien[D]. Hamburg: University of Hamburg, 2009.

    [83] [83] PETERS R, KRNKEL C, FREDRICH-THORNTON S T, et al. Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides[J]. Applied Physics B, 2011, 102(3): 509-514.

    [84] [84] WEICHELT B, WENTSCH K S, VOSS A, et al. A 670 W Yb∶Lu2O3 thin-disk laser[J]. Laser Physics Letters, 2012, 9(2): 110-115.

    [85] [85] TOKURAKAWA M, SHIRAKAWA A, UEDA K I, et al. Continuous wave and mode-locked Yb3+∶Y2O3 ceramic thin disk laser[J]. Optics Express, 2012, 20(10): 10847.

    [86] [86] DAVID S P, JAMBUNATHAN V, YUE F X, et al. Efficient diode pumped Yb∶Y2O3 cryogenic laser[J]. Applied Physics B, 2019, 125(7): 1-5.

    [87] [87] LIU Z Y, TOCI G, PIRRI A, et al. Fabrication and laser operation of Yb∶Lu2O3 transparent ceramics from co-precipitated nano-powders[J]. Journal of the American Ceramic Society, 2019, 102(12): 7491-7499.

    [88] [88] ESSER S, RHRER C, XU X D, et al. Ceramic Yb∶Lu2O3 thin-disk laser oscillator delivering an average power exceeding 1 kW in continuous-wave operation[J]. Optics Letters, 2021, 46(24): 6063.

    [89] [89] FU Y, GUO R Q, YU H H, et al. Efficient passively Q switched lasers with a large-energy stored Yb∶LuScO3 crystal[J]. Optics Letters, 2023, 48(2): 295-298.

    [90] [90] KITAJIMA S, SHIRAKAWA A, YAGI H, et al. Sub-100 fs pulse generation from a Kerr-lens mode-locked Yb∶Lu2O3 ceramic thin-disk laser[J]. Optics Letters, 2018, 43(21): 5451-5454.

    [91] [91] GREBORIO A, GUANDALINI A, AUS DER AU J. Sub-100 fs pulses with 12.5-W from Yb∶CALGO based oscillators[C]//SPIE Proceedings, Solid State Lasers XXI: Technology and Devices. San Francisco, California, USA. SPIE, 2012.

    [92] [92] MODSCHING N, DRS J, FISCHER J, et al. Sub-100-fs Kerr lens mode-locked Yb∶Lu2O3 thin-disk laser oscillator operating at 21 W average power[J]. Optics Express, 2019, 27(11): 16111.

    [93] [93] LIU X Q, JING W, HAO Q Q, et al. Characterisation of passively Q-switched Yb∶Lu2O3 ceramic laser based on graphdiyne absorber[J]. Infrared Physics & Technology, 2021, 115: 103739.

    [94] [94] VAN DALFSEN K, ARAVAZHI S, GRIVAS C, et al. Thulium-doped channel waveguide laser with 1.6 W of output power and exceeding 80% slope efficiency[C]//2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC. May 12-16, 2013, Munich, Germany. IEEE, 2014: 1.

    [95] [95] KOOPMANN P. Thulium- and holmium-doped sesquioxides for 2 μm lasers[D]. Hamburg: University of Hamburg, 2012.

    [96] [96] KOOPMANN P, LAMRINI S, SCHOLLE K, et al. Efficient diode-pumped laser operation of Tm∶Lu2O3 around 2 μm[J]. Optics Letters, 2011, 36(6): 948-950.

    [97] [97] ANTIPOV O, NOVIKOV A, LARIN S, et al. Highly efficient 2 μm CW and Q-switched Tm3+∶Lu2O3 ceramics lasers in-band pumped by a Raman-shifted erbium fiber laser at 1 670 nm[J]. Optics Letters, 2016, 41(10): 2298-2301.

    [98] [98] ANTIPOV O L, GETMANOVSKIY Y A, BALABANOV S S, et al. 1940 nm, 1966 nm and 2066 nm multi-wavelength CW and passively-Q-switched operation of L-shaped Tm3+∶Lu2O3 ceramic laser in-band fiber-laser pumped at 1670 nm[J]. Laser Physics Letters, 2021, 18(5): 055001.

    [99] [99] LI X X, DING M M, WANG J, et al. High power single frequency Tm∶Y2O3 ceramic laser at 2015 nm[J]. IEEE Photonics Journal, 2021, 13(3): 1-7.

    [100] [100] LIU Z Y, TOCI G, PIRRI A, et al. Fabrication and characterizations of Tm∶Lu2O3 transparent ceramics for 2 μm laser applications[J]. Optical Materials, 2022, 131: 112705.

    [101] [101] SUZUKI A, TOKURAKAWA M, KRANKEL C. High quality-factor Kerr-lens mode-locked Tm∶Sc2O3 laser beyond the gain bandwidth limitation[C]//2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). June 23-27, 2019, Munich, Germany. IEEE, 2019: 1.

    [102] [102] TOKURAKAWA M, FUJITA E, KRNKEL C. Sub-120 fs kerr-lens mode-locked Tm∶Sc2O3 laser In-band pumped by an Er;Yb fiber MOPA[C]//Conference on Lasers and Electro-Optics. San Jose, California. Washington, D.C.: OSA, 2018.

    [103] [103] SUZUKI A, KRNKEL C, TOKURAKAWA M. Combined gain media 60 fs Kerr-lens mode-locked laser based on Tm∶Lu2O3 and Tm∶Sc2O3[C]//Conference on Lasers and Electro-Optics. San Jose, California. Washington, D.C.: Optica Publishing Group, 2021.

    [104] [104] ZHANG N, LIU S, WANG Z, et al. Tm∶Y2O3 ceramic laser mode-locked with SESAM[C]. Proceedings of the Optica Advanced Photonics Congress. Barcelona: Optica Publishing Group, 2022/12/1.

    [105] [105] YU X X, CHU H W, ZHA F Y, et al. Watt-level diode-pumped Tm∶YVO4 laser at 2.3 μm[J]. Optics Letters, 2022, 47(21): 5501-5504.

    [106] [106] ZHA F Y, YU X X, CHU H W, et al. Compact diode-pumped continuous wave and passively Q switched Tm∶YAG laser at 2.33 μm[J]. Optics Letters, 2022, 47(23): 6265-6268.

    [107] [107] JAMBUNATHAN V, MATEOS X, PUJOL M C, et al. Optimization of dopant concentration in Ho∶KLu(WO4)2 laser achieving 70% slope efficiency[J]. Laser Physics, 2013, 23(12): 125801.

    [108] [108] BUDNI P A, POMERANZ L A, LEMONS M L, et al. Efficient mid-infrared laser using 1.9-μm-pumped Ho∶YAG and ZnGeP2 optical parametric oscillators[J]. Josa B, 2000, 17(5): 723-728.

    [109] [109] FAN T Y, HUBER G, BYER R L, et al. Continuous-wave operation at 2.1 μm of a diode-laser-pumped, Tm-sensitized Ho:Y3Al5O12 laser at 300 K[J]. Optics Letters, 1987, 12(9): 678-680.

    [110] [110] DONG J S, WANG W D, XUE Y Y, et al. Crystal growth and spectroscopic analysis of Ho∶Lu2O3 crystal for mid-infrared emission[J]. Journal of Luminescence, 2022, 251: 119192.

    [111] [111] GHEORGHE C, LUPEI A, LUPEI V, et al. Spectroscopic properties of Ho3+ doped Sc2O3 transparent ceramic for laser materials[J]. Journal of Applied Physics, 2009, 105(12): 123110.

    [112] [112] KOOPMANN P, LAMRINI S, SCHOLLE K, et al. Multi-watt laser operation and laser parameters of Ho-doped Lu2O3 at 212 μm[J]. Optical Materials Express, 2011, 1(8): 1447.

    [113] [113] KOOPMANN P, LAMRINI S, SCHOLLE K, et al. Holmium-doped Lu2O3, Y2O3, and Sc2O3 for lasers above 21 μm[J]. Optics Express, 2013, 21(3): 3926.

    [114] [114] WANG F, TANG J W, LI E H, et al. Ho3+∶Y2O3 ceramic laser generated over 113 W of output power at 2117 nm[J]. Optics Letters, 2019, 44(24): 5933-5936.

    [115] [115] LOIKO P, BASYROVA L, MAKSIMOV R, et al. Comparative study of Ho∶Y2O3 and Ho∶Y3Al5O12 transparent ceramics produced from laser-ablated nanoparticles[J]. Journal of Luminescence, 2021, 240: 118460.

    [116] [116] HUANG D D, YANG Q H, WANG Y G, et al. Spectral and laser properties of Yb and Ho co-doped (YLa)2O3 transparent ceramic[J]. Chinese Physics B, 2013, 22(3): 037801.

    [117] [117] LI T, BEIL K, KRNKEL C, et al. Laser performance of highly doped Er∶Lu2O3 at 2.8 μm[C]//Lasers, Sources, and Related Photonic Devices. San Diego, California. Washington, D.C.: OSA, 2012.

    [119] [119] POLLNAN M, JACKSON S D. Erbium 3 μm fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2001, 7(1): 30-40.

    [120] [120] LI T, BEIL K, KRNKEL C, et al. Efficient high-power continuous wave Er∶Lu2O3 laser at 285 μm[J]. Optics Letters, 2012, 37(13): 2568.

    [121] [121] UEHARA H, TOKITA S, KAWANAKA J, et al. Optimization of laser emission at 28 μm by Er∶Lu2O3 ceramics[J]. Optics Express, 2018, 26(3): 3497.

    [122] [122] YAO W C, UEHARA H, TOKITA S, et al. LD-pumped 2.8 μm Er∶Lu2O3 ceramic laser with 6.7 W output power and >30% slope efficiency[J]. Applied Physics Express, 2021, 14(1): 012001.

    [123] [123] ZONG M Y, HOU W T, ZHAO Y H, et al. 2.7 μm laser properties research of Er∶Y2O3 crystal[J]. Infrared Physics & Technology, 2022, 127: 104460.

    [124] [124] DING M M, LI X X, WANG F, et al. Power scaling of diode-pumped Er∶Y2O3 ceramic laser at 2.7 μm[J]. Applied Physics Express, 2022, 15(6): 062004.

    [125] [125] DING M M, WANG J, WANG F, et al. High-power Er∶Y2O3 ceramic laser with an optical vortex beam output at 2.7 μm[J]. Frontiers in Physics, 2023, 11: 1119263.

    [126] [126] DING M M, LI X X, WANG F, et al. Single longitudinal mode and widely tunable Er∶Y2O3 ceramic laser at 2.7 μm[J]. IEEE Photonics Journal, 2022, 15(1): 1-4.

    [127] [127] WANG L, HUANG H T, SHEN D Y, et al. High power and short pulse width operation of passively Q-switched Er∶Lu2O3 ceramic laser at 2.7 μm[J]. Applied Sciences, 2018, 8(5): 801.

    [128] [128] UEHARA H, TOKITA S, KAWANAKA J, et al. A passively Q-switched compact Er∶Lu2O3 ceramics laser at 2.8 μm with a graphene saturable absorber[J]. Applied Physics Express, 2019, 12(2): 022002.

    [129] [129] VEJKAR R, ULC J, JELNKOV H. Er∶Y2O3 high-repetition rate picosecond 2.7 μm laser[J]. Laser Physics Letters, 2019, 16(7): 075802.

    [130] [130] SU C Y, LIU Y Z, FENG T L, et al. Optical modulation of the MXene Ti3C2Tx saturable absorber for Er∶Lu2O3 laser[J]. Optical Materials, 2021, 115: 110949.

    Tools

    Get Citation

    Copy Citation Text

    WANG Mengmeng, YIN Yanru, DING Xiaoyuan, ZHANG Jing, FU Xiuwei, JIA Zhitai, TAO Xutang. Research Progress of Sesquioxide Crystals and Its Laser Performances in the Band of 1~3 μm[J]. Journal of Synthetic Crystals, 2023, 52(7): 1169

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jun. 25, 2023

    Accepted: --

    Published Online: Oct. 28, 2023

    The Author Email: Mengmeng WANG (wmm11@mail.sdu.edu.cn)

    DOI:

    CSTR:32186.14.

    Topics