Chinese Journal of Quantum Electronics, Volume. 41, Issue 2, 310(2024)

Nonreciprocal phonon⁃photon quantum interface mediated by mechanical resonator

WANG Xi... YANG Shuangliang, LENG Siyun, HUANG Wentao and ZHOU Yuan* |Show fewer author(s)
Author Affiliations
  • School of Mathematics, Physics and Optoelectronic engineering, Hubei University of Automotive Technology, Shiyan 442002, China
  • show less
    References(29)

    [1] Xiang Z L, Ashhab S, You J Q et al. Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems[J]. Reviews of Modern Physics, 85, 623(2013).

    [2] Aspelmeyer M, Kippenberg T J, Marquardt F. Cavity optomechanics[J]. Review of Modern Physics, 86, 1391-1452(2014).

    [3] Schuetz M J A, Kessler E M, Giedke G et al. Universal quantum transducers based on surface acoustic waves[J]. Physical Review X, 5, 031031(2015).

    [4] Doherty M W, Manson N B, Delaney P et al. The nitrogen-vacancy colour centre in diamond[J]. Physics Reports, 528, 1-45(2013).

    [5] Peng C Z, Pan J W. Quantum science experimental satellite "micius"[J]. Bulletin of Chinese Academy of Sciences, 31, 1096-1104(2016).

    [6] Zhao J Q, Cao L Z, Yang Y et al. Tripartite entanglement and nonlocality in three-photon generalized GHZ states[J]. Chinese Journal of Quantum Electronics, 35, 583-588(2018).

    [7] Guo G C, Zhang H, Wang Q. Review on development of quantum information technology[J]. Journal of Nanjing University of Posts and Telecommunications (Natural Science), 37, 1-14(2017).

    [8] Li C F, Guo G C. Progress in quantum information research[J]. Progress in Physics, 20, 407-431(2000).

    [9] Ding Z, Shi F Z, Du J F. Nanoscale magnetic imaging based on quantum sensing with diamond and its applications to condensed matter physics[J]. Physics, 49, 359-372(2020).

    [10] Yan K, Xie Y Q, Huang Y M et al. Quantum Fisher information evolution of entangled states in spin-Boson system[J]. Chinese Journal of Quantum Electronics, 35, 42-48(2018).

    [11] Lodahl P, Mahmoodian S, Stobbe S et al. Chiral quantum optics[J]. Nature, 541, 473-480(2017).

    [12] Delsing P, Cleland A N, Schuetz M J A et al. The 2019 surface acoustic waves roadmap[J]. Journal of Physics D: Applied Physics, 52, 353001(2019).

    [13] Schuetz M J A, Knörzer J, Giedke G et al. Acoustic traps and lattices for electrons in semiconductors[J]. Physical Review X, 7, 041019(2017).

    [14] Golter D A, Oo T, Amezcua M et al. Coupling a surface acoustic wave to an electron spin in diamond via a dark state[J]. Physical Review X, 6, 041060(2016).

    [15] Li P B, Zhou Y, Gao W B et al. Enhancing spin-phonon and spin-spin interactions using linear resources in a hybrid quantum system[J]. Physical Review Letters, 125, 153602(2020).

    [16] Li P B, Xiang Z L, Rabl P et al. Hybrid quantum device with nitrogen-vacancy centers in diamond coupled to carbon nanotubes[J]. Physical Review Letters, 117, 015502(2016).

    [17] Yao X Y, Ali H, Li F L et al. Nonreciprocal phonon blockade in a spinning acoustic ring cavity coupled to a two-level system[J]. Physical Review Applied, 17, 054004(2022).

    [18] Dong X L, Li P B, Liu T et al. Unconventional quantum sound-matter interactions in spin-optomechanical-crystal hybrid systems[J]. Physical Review Letters, 126, 203601(2021).

    [19] Jing H, Özdemir S K, Lü X Y et al. PT-symmetric phonon laser[J]. Physical Review Letters, 113, 053604(2014).

    [20] Huang R, Miranowicz A, Liao J Q et al. Nonreciprocal photon blockade[J]. Physical Review Letters, 121, 153601(2018).

    [21] Tian L, Li Z. Nonreciprocal quantum-state conversion between microwave and optical photons[J]. Physical Review A, 96, 013808(2017).

    [22] Bernier N R, Tóth L D, Koottandavida A et al. Nonreciprocal reconfigurable microwave optomechanical circuit[J]. Nature Communications, 8, 604(2017).

    [23] Xu X W, Li Y, Chen A X et al. Nonreciprocal conversion between microwave and optical photons in electro-optomechanical systems[J]. Physical Review A, 93, 023827(2016).

    [24] Xu X W, Li Y. Optical nonreciprocity and optomechanical circulator in three-mode optomechanical systems[J]. Physical Review A, 91, 053854(2015).

    [25] Xu X W, Shi H Q, Chen A X. Nonreciprocal transition between two indirectly coupled energy levels[J]. Frontiers of Physics, 17, 1-9(2022).

    [26] Wang X H, Wang R Z, Gu B Y et al. Decay distribution of spontaneous emission from an assembly of atoms in photonic crystals with pseudogaps[J]. Physical Review Letters, 88, 093902(2002).

    [27] Lu Y W, Liu J F, Liao Z Y et al. Plasmonic-photonic cavity for high-efficiency single-photon blockade[J]. Science China Physics, Mechanics & Astronomy, 64, 1-10(2021).

    [28] Denning E V, Iles-Smith J, Mork J. Quantum light-matter interaction and controlled phonon scattering in a photonic Fano cavity[J]. Physical Review B, 100, 214306(2019).

    [29] Franke S, Hughes S, Dezfouli M K et al. Quantization of quasinormal modes for open cavities and plasmonic cavity quantum electrodynamics[J]. Physical Review Letters, 122, 213901(2019).

    Tools

    Get Citation

    Copy Citation Text

    Xi WANG, Shuangliang YANG, Siyun LENG, Wentao HUANG, Yuan ZHOU. Nonreciprocal phonon⁃photon quantum interface mediated by mechanical resonator[J]. Chinese Journal of Quantum Electronics, 2024, 41(2): 310

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: May. 9, 2022

    Accepted: --

    Published Online: Jun. 24, 2024

    The Author Email:

    DOI:10.3969/j.issn.1007-5461.2024.02.013

    Topics