Acta Optica Sinica, Volume. 42, Issue 21, 2126008(2022)

Correlation Properties of Photons in Coherently Driven Atom-Cavity Quantum Electrodynamics System

Ying Zhou1 and Chengjie Zhu2、*
Author Affiliations
  • 1School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
  • 2School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu , China
  • show less
    References(46)

    [1] Boca A, Miller R, Birnbaum K M et al. Observation of the vacuum Rabi spectrum for one trapped atom[J]. Physical Review Letters, 93, 233603(2004).

    [2] Maunz P, Puppe T, Schuster I et al. Normal-mode spectroscopy of a single-bound-atom-cavity system[J]. Physical Review Letters, 94, 033002(2005).

    [3] Deng W W, Li G X, Qin H. Enhancement of the two-photon blockade in a strong-coupling qubit-cavity system[J]. Physical Review A, 91, 043831(2015).

    [4] Hamsen C, Tolazzi K N, Wilk T et al. Two-photon blockade in an atom-driven cavity QED system[J]. Physical Review Letters, 118, 133604(2017).

    [5] Mücke M, Figueroa E, Bochmann J et al. Electromagnetically induced transparency with single atoms in a cavity[J]. Nature, 465, 755-758(2010).

    [6] Ourjoumtsev A, Kubanek A, Koch M et al. Observation of squeezed light from one atom excited with two photons[J]. Nature, 474, 623-626(2011).

    [7] Ajiki H, Ishihara H, Edamatsu K. Cavity-assisted generation of entangled photons from a V-type three-level system[J]. New Journal of Physics, 11, 033033(2009).

    [8] Hou K, Bao D Q, Zhu C J et al. W-state preparation and entanglement dynamics in Rydberg atomic system based on the collective excitation enhancement[J]. Laser Physics, 29, 015201(2019).

    [9] Yan D, Wang B B, Bai W J et al. Single-photon level electromagnetically induced transparency based on dipole blockade effect[J]. Acta Optica Sinica, 39, 0427002(2019).

    [10] Kimble H J. The quantum internet[J]. Nature, 453, 1023-1030(2008).

    [11] Ritter S, Nölleke C, Hahn C et al. An elementary quantum network of single atoms in optical cavities[J]. Nature, 484, 195-200(2012).

    [12] Reiserer A, Rempe G. Cavity-based quantum networks with single atoms and optical photons[J]. Reviews of Modern Physics, 87, 1379-1418(2015).

    [13] Zhai S Q, Yuan N. Manipulated multipartite continue-variable EPR steering with loss and Gaussian noise[J]. Chinese Journal of Lasers, 48, 2012001(2021).

    [14] Volz J, Gehr R, Dubois G et al. Measurement of the internal state of a single atom without energy exchange[J]. Nature, 475, 210-213(2011).

    [15] Zhai S Q, Yuan N, Liu K. EPR quantum steering switch based on entanglement swapping[J]. Acta Optica Sinica, 41, 1627002(2021).

    [16] Huang X, Ni M, Ji Y et al. Simulation on boson sampling with photon partial distinguishability and photon losses[J]. Acta Optica Sinica, 41, 1227001(2021).

    [17] Liu W N, Liu J H, Yu Y F et al. Simulating search algorithm via weak value amplification in optical system[J]. Acta Optica Sinica, 42, 0327020(2022).

    [18] Brune M, Schmidt-Kaler F, Maali A et al. Quantum Rabi oscillation: a direct test of field quantization in a cavity[J]. Physical Review Letters, 76, 1800-1803(1996).

    [19] Imamog̅lu A, Schmidt H, Woods G et al. Strongly interacting photons in a nonlinear cavity[J]. Physical Review Letters, 79, 1467-1470(1997).

    [20] Birnbaum K M, Boca A, Miller R et al. Photon blockade in an optical cavity with one trapped atom[J]. Nature, 436, 87-90(2005).

    [21] Koch M, Sames C, Balbach M et al. Three-photon correlations in a strongly driven atom-cavity system[J]. Physical Review Letters, 107, 023601(2011).

    [22] Werner M J, Imamog̅lu A. Photon-photon interactions in cavity electromagnetically induced transparency[J]. Physical Review A, 61, 011801(1999).

    [23] Yan S B, Geng T, Zhang T C et al. Cesium double magneto-optical trap for cavity-quantum electrodynamics[J]. Chinese Journal of Lasers, 33, 190-194(2006).

    [24] Rebić S, Parkins A S, Tan S M. Photon statistics of a single-atom intracavity system involving electromagnetically induced transparency[J]. Physical Review A, 65, 063804(2002).

    [25] Kim J, Benson O, Kan H et al. A single-photon turnstile device[J]. Nature, 397, 500-503(1999).

    [26] Smolyaninov I I, Zayats A V, Gungor A et al. Single-photon tunneling via localized surface plasmons[J]. Physical Review Letters, 88, 187402(2002).

    [27] Brecha R J, Rice P R, Xiao M. N two-level atoms in a driven optical cavity: quantum dynamics of forward photon scattering for weak incident fields[J]. Physical Review A, 59, 2392-2417(1999).

    [28] Guo Y T, Zou F, Huang J F et al. Retrieval of photon blockade effect in the dispersive Jaynes-Cummings model[J]. Physical Review A, 105, 013705(2022).

    [29] Trivedi R, Radulaski M, Fischer K A et al. Photon blockade in weakly driven cavity quantum electrodynamics systems with many emitters[J]. Physical Review Letters, 122, 243602(2019).

    [30] Birnbaum K M, Boca A, Miller R et al. Photon blockade in an optical cavity with one trapped atom[J]. Nature, 436, 87-90(2005).

    [31] Feng L J, Gong S Q. Two-photon blockade generated and enhanced by mechanical squeezing[J]. Physical Review A, 103, 043509(2021).

    [32] Zou F, Lai D G, Liao J Q. Enhancement of photon blockade effect via quantum interference[J]. Optics Express, 28, 16175-16190(2020).

    [33] Wang D Y, Bai C H, Han X et al. Enhanced photon blockade in an optomechanical system with parametric amplification[J]. Optics Letters, 45, 2604-2607(2020).

    [34] Reimann R, Alt W, Kampschulte T et al. Cavity-modified collective Rayleigh scattering of two atoms[J]. Physical Review Letters, 114, 023601(2015).

    [35] Lin J Z, Hou K, Zhu C J et al. Manipulation and improvement of multiphoton blockade in a cavity-QED system with two cascade three-level atoms[J]. Physical Review A, 99, 053850(2019).

    [36] Han Y F, Zhu C J, Huang X S et al. Dynamic properties of atomic collective decay in cavity quantum electrodynamics[J]. Chinese Physics B, 27, 124206(2018).

    [37] Han Y F, Li X, Huang X S. Improvement of three-photon blockade using cavity electromagnetically induced transparency[J]. International Journal of Theoretical Physics, 59, 1679-1687(2020).

    [38] Zhu C J, Yang Y P, Agarwal G S. Collective multi-photon blockade in cavity quantum electrodynamics[J]. Physical Review A, 95, 063842(2017).

    [39] Hou K, Zhu C J, Yang Y P et al. Interfering pathways for photon blockade in cavity QED with one and two qubits[J]. Physical Review A, 100, 063817(2019).

    [40] Li W, Zhu C J, Yang Y P. Electromagnetic field induced strong two photon blockade with hyperradiant behavior[J]. Optics Express, 29, 42176-42183(2021).

    [41] Casabone B, Friebe K, Brandstätter B et al. Enhanced quantum interface with collective ion-cavity coupling[J]. Physical Review Letters, 114, 023602(2015).

    [42] Wiegner R, von Zanthier J, Agarwal G S. Quantum-interference-initiated superradiant and subradiant emission from entangled atoms[J]. Physical Review A, 84, 023805(2011).

    [43] Oliver P M, Joachim V Z, Agarwal G S. Hyperradiance from collective behavior of coherently driven atoms[J]. Optica, 4, 779-785(2017).

    [44] Sanchez-Mondragon J J, Narozhny N B, Eberly J H. Theory of spontaneous emission line shape in an ideal cavity[J]. Physical Review Letters, 51, 1925(1983).

    [45] Berman P R[M]. Cavity quantum electrodynamics(1994).

    [46] Neuzner A, Körber M, Morin O et al. Interference and dynamics of light from a distance-controlled atom pair in an optical cavity[J]. Nature Photonics, 10, 303-306(2016).

    Tools

    Get Citation

    Copy Citation Text

    Ying Zhou, Chengjie Zhu. Correlation Properties of Photons in Coherently Driven Atom-Cavity Quantum Electrodynamics System[J]. Acta Optica Sinica, 2022, 42(21): 2126008

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Physical Optics

    Received: May. 20, 2022

    Accepted: Jul. 4, 2022

    Published Online: Nov. 4, 2022

    The Author Email: Zhu Chengjie (cjzhu@suda.edu.cn)

    DOI:10.3788/AOS202242.2126008

    Topics