Journal of Semiconductors, Volume. 44, Issue 9, 091605(2023)
A landscape of β-Ga2O3 Schottky power diodes
Fig. 1. (Color online) (a) Schematic of the first field-plated β-Ga2O3 SBD. (b) Forward current–voltage (I–V) characteristic of the device. (c) Reverse breakdown characteristic of the device. Reprinted from Ref. [21], with the permission of AIP Publishing.
Fig. 2. (Color online) (a) Schematic of a β-Ga2O3 SBD with an ultrahigh-permittivity field-plate dielectric, where S1 corresponds to a 15-period BaTiO3/SrTiO3 superlattice as the field-plate oxide [(BTO/STO)15 FP] and S2 corresponds to BaTiO3 as the field-plate oxide (BTO FP). The cross-sectional transmission electron microscopy image depicts the field-plated region of the S1 structure. (b) Forward I–V characteristics and differential RON,sp of a β-Ga2O3 SBD with (BTO/STO)15 FP, a β-Ga2O3 SBD with BTO FP, and a reference SBD without a field plate. (c) Reverse breakdown characteristics of the three different SBD structures. © 2021 IEEE. Reprinted, with permission, from Ref. [40].
Fig. 3. (Color online) (a) Schematics of beveled-mesa β-Ga2O3 SBDs with a ~45° beveled field plate (BFP) and with a small-angle (~1°) beveled field plate (SABFP). (b) Reverse breakdown characteristics of the BFP-SBD and SABFP-SBD showing higher Vbr than those of mesa-free β-Ga2O3 SBDs that are either unterminated or terminated with a ~45° beveled surface field plate (SFP). (c) Forward I–V characteristics and differential RON,sp of SABFP-SBDs with different anode diameters. © 2019 IEEE. Reprinted, with permission, from Ref. [44].
Fig. 4. (Color online) Comparison between reverse breakdown characteristics of β-Ga2O3 SBDs with no edge termination, He-implanted edge termination, and Mg-implanted edge termination. © 2020 IEEE. Reprinted, with permission, from Ref. [45].
Fig. 5. (Color online) Schematics of an unterminated β-Ga2O3 SBD, a β-Ga2O3 SBD with self-aligned fluorine plasma treatment (FPT), and a β-Ga2O3 SBD with self-aligned beveled fluorine plasma treatment (BFPT). (b) Forward I–V characteristics and differential RON,sp of the three different SBDs. (c) Reverse breakdown characteristics of the three different SBDs. © 2020 IEEE. Reprinted, with permission, from Ref. [57].
Fig. 6. (Color online) Schematic of a β-Ga2O3 SBD terminated with p-NiO FLRs alongside an unterminated device. Reprinted from Ref. [63], with the permission of AIP Publishing.
Fig. 7. Calculated maximum surface electric fields (Esurf) in β-Ga2O3 SBDs, defined at a maximum reverse leakage current (JR,max) of 1 or 100 mA/cm2 at 25 °C. Experimental data from the literature are also shown (solid for JR,max = 1 mA/cm2 and hollow for JR,max = 100 mA/cm2). Adapted from Ref. [67], with the permission of AIP Publishing.
Fig. 8. (Color online) (a) Schematic of the first β-Ga2O3 JBSD. (b) Forward I–V characteristic of the JBSD showing similar VON to a regular β-Ga2O3 SBD and lower VON than a p-NiO/n-Ga2O3 diode (PND). (c) Reverse breakdown characteristic of the JBSD showing higher Vbr than a regular β-Ga2O3 SBD because of the RESURF effect but lower Vbr than a PND owing to higher reverse leakage current through a Schottky junction. Reprinted with permission from Ref. [72]. Copyright 2019 SPIE.
Fig. 9. (Color online) (a) Schematic of a field-plated β-Ga2O3 trench SBD. (b) Cross-sectional scanning electron microscopy image of a fin channel. (c) Reverse breakdown characteristics of field-plated β-Ga2O3 trench SBDs. In comparison with regular β-Ga2O3 SBDs employing both mesa and field plate terminations, the field-plated trench devices have much lower leakage current and a much higher Vbr. (d) Forward I–V characteristics and differential RON,sp of field-plated β-Ga2O3 trench SBDs under DC and pulsed conditions. A base voltage of 0 V, a pulse width of 1 µs, and a duty cycle of 0.1% are used for the pulsed measurements. © 2020 IEEE. Reprinted, with permission, from Ref. [82].
Fig. 10. (Color online) Simulated electric-field profiles in a β-Ga2O3 trench SBD along a vertical cutline at the center of a fin under a reverse bias of –1375 V by varying (a) fin width [Wfin, see
Fig. 11. (Color online) (a) Schematic of a field-plated β-Ga2O3 SBD with double-side-cooling flip-chip package. (b) I–V waveforms of the double-side-cooled device in surge current tests. (c) I–V loops of the double-side-cooled device. © 2021 IEEE. Reprinted, with permission, from Ref. [90].
Get Citation
Copy Citation Text
Man Hoi Wong. A landscape of β-Ga2O3 Schottky power diodes[J]. Journal of Semiconductors, 2023, 44(9): 091605
Category: Articles
Received: Aug. 30, 2023
Accepted: --
Published Online: Oct. 25, 2023
The Author Email: Wong Man Hoi (eemhwong@ust.hk)