Photonics Research, Volume. 10, Issue 6, 1491(2022)

Deep reinforcement with spectrum series learning control for a mode-locked fiber laser

Zhan Li1,2, Shuaishuai Yang1,3, Qi Xiao1,2, Tianyu Zhang1,2, Yong Li1,2, Lu Han1,2, Dean Liu1,4、*, Xiaoping Ouyang1,5、*, and Jianqiang Zhu1
Author Affiliations
  • 1Key Laboratory of High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
  • 4e-mail: liudean@siom.ac.cn
  • 5e-mail: oyxp@siom.ac.cn
  • show less
    References(46)

    [1] A. Chong, J. Buckley, W. Renninger, F. Wise. All-normal-dispersion femtosecond fiber laser. Opt. Express, 14, 10095-10100(2006).

    [2] M. Schultz, H. Karow, O. Prochnow, D. Wandt, U. Morgner, D. Kracht. All-fiber ytterbium femtosecond laser without dispersion compensation. Opt. Express, 16, 19562-19567(2008).

    [3] P. Yang, T. Hao, Z. Hu, S. Fang, J. Wang, J. Zhu, Z. Wei. Highly stable Yb-fiber laser amplifier of delivering 32-μJ, 153-fs pulses at 1-MHz repetition rate. Appl. Phys. B, 124, 169(2018).

    [4] E. P. Perillo, J. E. McCracken, D. C. Fernée, J. R. Goldak, F. A. Medina, D. R. Miller, H.-C. Yeh, A. K. Dunn. Deep in vivo two-photon microscopy with a low cost custom built mode-locked 1060 nm fiber laser. Biomed. Opt. Express, 7, 324-334(2016).

    [5] X. Shen, W. Li, M. Yan, H. Zeng. Electronic control of nonlinear-polarization-rotation mode locking in Yb-doped fiber lasers. Opt. Lett., 37, 3426-3428(2012).

    [6] G. Pu, L. Yi, L. Zhang, W. Hu. Intelligent programmable mode-locked fiber laser with a human-like algorithm. Optica, 6, 362-369(2019).

    [7] R. I. Woodward, E. J. R. Kelleher. Towards ‘smart lasers’: self-optimisation of an ultrafast pulse source using a genetic algorithm. Sci. Rep., 6, 37616(2016).

    [8] A. E. Bednyakova, D. S. Kharenko, A. P. Yarovikov. Numerical analysis of the transmission function of the NPE-based saturable absorber in a mode-locked fiber laser. J. Opt. Soc. Am. B, 37, 2763-2767(2020).

    [9] D. Y. Tang, L. M. Zhao, B. Zhao, A. Q. Liu. Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers. Phys. Rev. A, 72, 043816(2005).

    [10] C.-J. Chen, P. K. A. Wai, C. R. Menyuk. Soliton fiber ring laser. Opt. Lett., 17, 417-419(1992).

    [11] L. Gao, Y. Chai, D. Zibar, Z. Yu. Deep learning in photonics: introduction. Photon. Res., 9, DLP1-DLP3(2021).

    [12] J. Ma, Z. Piao, S. Huang, X. Duan, G. Qin, L. Zhou, Y. Xu. Monte Carlo simulation fused with target distribution modeling via deep reinforcement learning for automatic high-efficiency photon distribution estimation. Photon. Res., 9, B45-B56(2021).

    [13] Y. Luo, S. Yan, H. Li, P. Lai, Y. Zheng. Towards smart optical focusing: deep learning-empowered dynamic wavefront shaping through nonstationary scattering media. Photon. Res., 9, B262-B278(2021).

    [14] C. M. Valensise, A. Giuseppi, G. Cerullo, D. Polli. Deep reinforcement learning control of white-light continuum generation. Optica, 8, 239-242(2021).

    [15] T. Baumeister, S. L. Brunton, J. N. Kutz. Deep learning and model predictive control for self-tuning mode-locked lasers. J. Opt. Soc. Am. B, 35, 617-626(2018).

    [16] V. François-Lavet, P. Henderson, R. Islam, M. G. Bellemare, J. Pineau. An introduction to deep reinforcement learning. Found. Trends Mach. Learn., 11, 219-354(2018).

    [17] Q. Yan, Q. Deng, J. Zhang, Y. Zhu, K. Yin, T. Li, D. Wu, T. Jiang. Low-latency deep-reinforcement learning algorithm for ultrafast fiber lasers. Photon. Res., 9, 1493-1501(2021).

    [18] C. Sun, E. Kaiser, S. L. Brunton, J. N. Kutz. Deep reinforcement learning for optical systems: a case study of mode-locked lasers. Mach. Learn. Sci. Technol., 1, 045013(2020).

    [19] W. H. Renninger, A. Chong, F. W. Wise. Dissipative solitons in normal-dispersion fiber lasers. Phys. Rev. A, 77, 023814(2008).

    [20] E. Ding, E. Shlizerman, J. N. Kutz. Generalized master equation for high-energy passive mode-locking: the sinusoidal Ginzburg–Landau equation. IEEE J. Quantum Electron., 47, 705-714(2011).

    [21] X. Zhang, F. Li, K. Nakkeeran, J. Yuan, Z. Kang, J. N. Kutz, P. K. A. Wai. Impact of spectral filtering on multipulsing instability in mode-locked fiber lasers. IEEE J. Sel. Top. Quantum Electron., 24, 1101309(2018).

    [22] X. Fu, J. N. Kutz. High-energy mode-locked fiber lasers using multiple transmission filters and a genetic algorithm. Opt. Express, 21, 6526-6537(2013).

    [23] S. L. Brunton, X. Fu, J. N. Kutz. Extremum-seeking control of a mode-locked laser. IEEE J. Quantum Electron., 49, 852-861(2013).

    [24] X. Fu, S. L. Brunton, J. N. Kutz. Classification of birefringence in mode-locked fiber lasers using machine learning and sparse representation. Opt. Express, 22, 8585-8597(2014).

    [25] S. Hochreiter, J. Schmidhuber. Long short-term memory. Neural Comput., 9, 1735-1780(1997).

    [26] A. Graves, M. Liwicki, S. Fernández, R. Bertolami, H. Bunke, J. Schmidhuber. A novel connectionist system for unconstrained handwriting recognition. IEEE Trans. Pattern Anal. Mach. Intell., 31, 855-868(2009).

    [27] H. Sak, A. W. Senior, F. Beaufays. Long short-term memory based recurrent neural network architectures for large vocabulary speech recognition(2014).

    [28] X. Li, L. Li, J. Gao, X. He, J. Chen, L. Deng, J. He. Recurrent reinforcement learning: a hybrid approach(2015).

    [29] V. Konda, S. Solla, T. Leen, J. Tsitsiklis, K. Müller. Actor-critic algorithms. Advances in Neural Information Processing Systems, 12(2000).

    [30] C. E. Rasmussen, M. Kuss. Gaussian processes in reinforcement learning. Proceedings of the 16th International Conference on Neural Information Processing Systems, 751-758(2003).

    [31] X. Glorot, A. Bordes, Y. Bengio. Deep sparse rectifier neural networks. Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, 315-323(2011).

    [32] A. Y. Ng, D. Harada, S. Russell. Policy invariance under reward transformations: theory and application to reward shaping. Proceedings of the Sixteenth International Conference on Machine Learning, 278-287(1999).

    [33] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov. Proximal policy optimization algorithms(2017).

    [34] F. X. Kaertner, L. R. Brovelli, D. Kopf, M. Kamp, I. G. Calasso, U. Keller. Control of solid state laser dynamics by semiconductor devices. Opt. Eng., 34, 2024-2036(1995).

    [35] T. Lin, P. Goyal, R. Girshick, K. He, P. Dollar. Focal loss for dense object detection. IEEE Trans. Pattern Anal. Mach. Intell., 42, 318-327(2020).

    [36] I. N. Ross, D. Karadia, J. M. Barr. Single shot measurement of pulse duration for a picosecond pulse at 249 nm. Appl. Opt., 28, 4054-4056(1989).

    [37] S. Kane, J. Squier. Grating compensation of third-order material dispersion in the normal dispersion regime: sub-100-fs chirped-pulse amplification using a fiber stretcher and grating-pair compressor. IEEE J. Quantum Electron., 31, 2052-2057(1995).

    [38] M.-J. Li, X. Chen, A. Liu, S. Gray, J. Wang, D. T. Walton, L. A. Zenteno. Limit of effective area for single-mode operation in step-index large mode area laser fibers. J. Lightwave Technol., 27, 3010-3016(2009).

    [39] X. Liu, R. Zhou, D. Pan, Q. Li, H. Y. Fu. 115-MHz linear npe fiber laser using all polarization-maintaining fibers. IEEE Photon. Technol. Lett., 33, 81-84(2021).

    [40] J. Szczepanek, T. M. Kardaś, C. Radzewicz, Y. Stepanenko. Nonlinear polarization evolution of ultrashort pulses in polarization maintaining fibers. Opt. Express, 26, 13590-13604(2018).

    [41] L. Wei, T. T. Alkeskjold, A. Bjarklev. Tunable and rotatable polarization controller using photonic crystal fiber filled with liquid crystal. Appl. Phys. Lett., 96, 241104(2010).

    [42] D. G. Winters, M. S. Kirchner, S. J. Backus, H. C. Kapteyn. Electronic initiation and optimization of nonlinear polarization evolution mode-locking in a fiber laser. Opt. Express, 25, 33216-33225(2017).

    [43] H. Ahmad, S. Aidit, Z. Tiu. Dissipative soliton resonance in a passively mode-locked praseodymium fiber laser. Opt. Laser Technol., 112, 20-25(2019).

    [44] A. Komarov, F. Amrani, A. Dmitriev, K. Komarov, F. M. C. Sanchez. Competition and coexistence of ultrashort pulses in passive mode-locked lasers under dissipative-soliton-resonance conditions. Phys. Rev. A, 87, 023838(2013).

    [45] D. Mao, Z. He, Y. Zhang, Y. Du, C. Zeng, L. Yun, Z. Luo, T. Li, Z. Sun, J. Zhao. Phase-matching-induced near-chirp-free solitons in normal-dispersion fiber lasers. Light Sci. Appl., 11, 25(2022).

    [46] S. Kim, J. Park, S. Han, Y.-J. Kim, S.-W. Kim. Coherent supercontinuum generation using Er-doped fiber laser of hybrid mode-locking. Opt. Lett., 39, 2986-2989(2014).

    Tools

    Get Citation

    Copy Citation Text

    Zhan Li, Shuaishuai Yang, Qi Xiao, Tianyu Zhang, Yong Li, Lu Han, Dean Liu, Xiaoping Ouyang, Jianqiang Zhu. Deep reinforcement with spectrum series learning control for a mode-locked fiber laser[J]. Photonics Research, 2022, 10(6): 1491

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers and Laser Optics

    Received: Feb. 4, 2022

    Accepted: Apr. 29, 2022

    Published Online: May. 25, 2022

    The Author Email: Dean Liu (liudean@siom.ac.cn), Xiaoping Ouyang (oyxp@siom.ac.cn)

    DOI:10.1364/PRJ.455493

    Topics