Chinese Optics Letters, Volume. 20, Issue 11, 112602(2022)

Second-order cumulants ghost imaging

Huan Zhao1, Xiaoqian Wang1、**, Chao Gao1, Zhuo Yu1,2, Shuang Wang1, Lidan Gou1, and Zhihai Yao1、*
Author Affiliations
  • 1Department of Physics, Changchun University of Science and Technology, Changchun 130022, China
  • 2School of Physics and Electronics, Baicheng Normal University, Baicheng 137000, China
  • show less
    References(39)

    [1] T. B. Pittman, Y. H. Shih, D. V. Strekalov, A. V. Sergienko. Optical imaging by means of two-photon quantum entanglement. Phys. Rev. A, 52, R3429(1995).

    [2] C. Gao, X.-Q. Wang, L.-D. Gou, Y.-L. Feng, H.-J. Cai, Z-F. Wang, Z.-H. Yao. Ghost imaging for an occluded object. Laser Phys. Lett., 16, 065202(2019).

    [3] C. Gao, X.-Q. Wang, Z.-F. Wang, Z. Li, G.-J. Du, F. Chang, Z.-H. Yao. Optimization of computational ghost imaging. Phys. Rev. A, 96, 023838(2017).

    [4] A. Gatti, E. Brambilla, M. Bache, L. A. Lugiato. Ghost imaging with thermal light: comparing entanglement and classical correlation. Phys. Rev. Lett., 93, 093602(2004).

    [5] P. H. S. Ribeiro, S. Pádua, J. C. Machado da Silva, G. A. Barbosa. Controlling the degree of visibility of Young’s fringes with photon coincidence measurements. Phys. Rev. A, 49, 4176(1994).

    [6] A. Gatti, E. Brambilla, L. A. Lugiato. Entangled imaging and wave-particle duality: from the microscopic to the macroscopic realm. Phys. Rev. Lett., 90, 133603(2003).

    [7] M. Ron, K. S. Deacon, Y. H. Shih. Ghost-imaging experiment by measuring reflected photons. Phys. Rev. A, 77, 041801(2008).

    [8] J. Cheng, S.-H. Han. Incoherent coincidence imaging and its applicability in X-ray diffraction. Phys. Rev. Lett., 92, 093903(2004).

    [9] A. F. Abouraddy, B. E. A. Saleh, A. V. Sergienko, M. C. Teich. Role of entanglement in two-photon imaging. Phys. Rev. Lett., 87, 123602(2001).

    [10] E. Baleine, A. Dogariu, G. S. Agarwal. Correlated imaging with shaped spatially partially coherent light. Opt. Lett., 31, 2124(2006).

    [11] X.-H. Chen, Q. Liu, K.-H. Luo, L.-A. Wu. Lensless ghost imaging with true thermal light. Opt. Lett., 34, 695(2009).

    [12] M. O. Scully, M. S. Zubairy. Quantum Optics(1999).

    [13] R. Hanbury Brown, R. Q. Twiss. LXXIV. A new type of interferometer for use in radio astronomy. Lond. Edinb. Dublin Philos. Mag. J. Sci., 45, 663(1954).

    [14] R. Hanbury Brown, R. Q. Twiss. Correlation between photons in two coherent beams of light. Nature, 177, 27(1956).

    [15] R. Hanbury Brown, R. Q. Twiss. A test of a new type of stellar interferometer on sirius. Nature, 178, 1046(1956).

    [16] J. Cheng. Ghost imaging through turbulent atmosphere. Opt. Express, 17, 7916(2009).

    [17] F. Ferri, D. Magatti, L. A. Lugiato, A. Gatti. Differential ghost imaging. Phys. Rev. Lett., 104, 253603(2010).

    [18] X.-H. Chen, F.-H. Kong, Q. Fu, S.-Y. Meng, L.-A. Wu. Sub-Rayleigh resolution ghost imaging by spatial low-pass filtering. Opt. Lett., 42, 5290(2017).

    [19] P. A. Moreau, E. Toninelli, P. A. Morris, R. S. Aspden, T. Gregory, G. Spalding, R. W. Boyd, M. J. Padgett. Resolution limits of quantum ghost imaging. Opt. Express, 26, 7528(2018).

    [20] S.-Y. Meng, Y.-H. Sha, Q. Fu, Q.-Q. Bao, W.-W. Shi, G.-D. Li, X.-H. Chen, L.-A. Wu. Super-resolution imaging by anticorrelation of optical intensities. Opt. Lett., 43, 4759(2018).

    [21] S. W. Hell, J. Wichmann. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett., 19, 780(1994).

    [22] W. Larson, B. E. A. Saleh. Resurgence of Rayleigh’s curse in the presence of partial coherence. Optica, 5, 1382(2018).

    [23] J. Du, W.-L. Gong, S.-S. Han. The influence of sparsity property of images on ghost imaging with thermal light. Opt. Lett., 37, 1067(2012).

    [24] W.-L. Gong, S.-S. Han. Experimental investigation of the quality of lensless super-resolution ghost imaging via sparsity constraints. Phys. Lett. A, 376, 1519(2012).

    [25] Y. Shechtman, S. Gazit, A. Szameit, Y. C. Eldar, M. Segev. Super-resolution and reconstruction of sparse images carried by incoherent light. Opt. Lett., 35, 1148(2010).

    [26] J. Chen, W.-L. Gong, S.-S. Han. Sub-Rayleigh ghost imaging via sparsity constraints based on a digital micro-mirror device. Phys. Lett. A, 377, 1844(2013).

    [27] X. Bai, Y.-Q. Li, S.-M. Zhao. Differential compressive correlated imaging. Acta. Phys. Sin., 62, 044209(2013).

    [28] L.-Z. Li, X.-R. Yao, X.-F. Liu, W.-K. Yu, G.-J. Zhai. Super-resolution ghost imaging via compressed sensing. Acta. Phys. Sin., 63, 224201(2014).

    [29] P.-L. Zhang, W.-L. Gong, X. Shen, D.-J. Huang, S.-S. Han. Improving resolution by the second-order correlation of light fields. Opt. Lett., 34, 1222(2009).

    [30] J. Sprigg, T. Peng, Y. H. Shih. Super-resolution imaging using the spatial-frequency filtered intensity fluctuation correlation. Sci. Rep., 6, 38077(2016).

    [31] K. Kuplicki, K. W. C. Chan. High-order ghost imaging using non-Rayleigh speckle sources. Opt. Express, 24, 26766(2016).

    [32] Y.-L. Wang, Y.-N. Zhou, S.-X. Wang, F.-R. Wang, R.-F. Liu, H. Gao, P. Zhang, F.-L. Li. Enhancement of spatial resolution of ghost imaging via localizing and thresholding. Chin. Phys. B, 28, 044202(2019).

    [33] Z.-S. Tong, Z.-T. Liu, C.-Y. Hu, J. Wang, S.-S. Han. Preconditioned deconvolution method for high-resolution ghost imaging. Photonics Res., 9, 1069(2021).

    [34] W-X. Shi, C.-Y. Hu, S.-G. Yang, M.-H. Chen, H.-W. Chen. Optical random speckle encoding based on hybrid wavelength and phase modulation. Opt. Lett., 46, 3745(2021).

    [35] F. Wang, C.-L. Wang, M.-L. Chen, W.-L. Gong, Y. Zhang, S.-S. Han, G. Situ. Far-field super-resolution ghost imaging with a deep neural network constraint. Light Sci. Appl., 11, 1(2022).

    [36] H.-L. Ye, Y. Kang, J. Wang, L.-H. Zhang, H.-J. Sun, D.-W. Zhang. High resolution reconstruction method of ghost imaging via SURF-NSML. J. Korean Phys. Soc., 80, 964(2022).

    [37] X. Zeng, Y.-F. Bai, X.-H. Shi, Y. Gao, X.-Q. Fu. The influence of the positive and negative defocusing on lensless ghost imaging. Opt. Commun., 382, 415(2017).

    [38] F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, L. A. Lugiato. High-resolution ghost image and ghost diffraction experiments with thermal light. Phys. Rev. Lett., 94, 183602(2005).

    [39] M. Paúr, B. Stoklasa, Z. Hradil, L. L. Sánchez-Soto, J. Rehacek. Achieving the ultimate optical resolution. Optica, 3, 1144(2016).

    Cited By
    Tools

    Get Citation

    Copy Citation Text

    Huan Zhao, Xiaoqian Wang, Chao Gao, Zhuo Yu, Shuang Wang, Lidan Gou, Zhihai Yao. Second-order cumulants ghost imaging[J]. Chinese Optics Letters, 2022, 20(11): 112602

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Physical Optics

    Received: Apr. 21, 2022

    Accepted: Jun. 15, 2022

    Posted: Jun. 15, 2022

    Published Online: Jul. 25, 2022

    The Author Email: Xiaoqian Wang (xqwang21@163.com), Zhihai Yao (yaozh@cust.edu.cn)

    DOI:10.3788/COL202220.112602

    Topics