Journal of the Chinese Ceramic Society, Volume. 51, Issue 2, 438(2023)

Macro-/Micro-Design of Electrochemical Energy Battery Based on Machine Learning

LI Jinjin*... CAI Junfei, HAN Yanqiang, WANG Zhilong, CHEN An and YE Simin |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(115)

    [1] [1] KOOHI-FAYEGH S, ROSEN M A. A review of energy storage types, applications and recent developments[J]. J Energy Storage, 2020(2): 101047.

    [2] [2] CHEN C, ZUO Y, YE W, et al. A critical review of machine learning of energy materials[J]. Adv Energy Mater, 2020, 10(8): 1903242.

    [3] [3] BACHMAN J C, MUY S, GRIMAUD A, et al. Inorganic solid-state electrolytes for lithium batteries: Mechanisms and properties governing ion conduction[J]. Chem Rev, 2016, 116(1): 140-162.

    [4] [4] FU Z H, CHEN X, ZHANG Q. Review on the lithium transport mechanism in solid-state battery materials[J]. WIREs Comput Molecular Sci, 2022. Doi: 10.1002/wcms.1621.

    [5] [5] WANG Z, ZHENG X, CHEN A, et al. Unraveling the anchoring effect of mxene-supported single atoms as cathodes for aluminum-sulfur batteries[J]. ACS Mater Lett, 2022, 4(8): 1436-1445.

    [6] [6] LU C, FANG R, CHEN X. Single-atom catalytic materials for advanced battery systems[J]. Adv Mater, 2020, 32(16): 1906548.

    [7] [7] LI M, LU Jun, JI Xiulei, et al. Design strategies for nonaqueous multivalent-ion and monovalent-ion battery anodes[J]. Nat Rev Mater, 2020, 5(4): 276.

    [8] [8] LIU Y, GUO B, ZOU X, et al. Machine learning assisted materials design and discovery for rechargeable batteries[J]. Energy Storage Mater, 2020, 31: 434-450.

    [9] [9] LIOW C H, KANG Hyeonmuk, KIM Seunggu, et al. Machine learning assisted synthesis of lithium-ion batteries cathode materials[J]. Nano Energy, 2022, 98: 107214.

    [10] [10] KN?SGAARD N R, THYGESEN K S. Representing individual electronic states for machine learning GW band structures of 2D materials[J]. Nat Commun, 2022, 13(1): 468.

    [11] [11] WANG Y, CAI Junfei, HAN Tianli, et al. In-situ growing polyaniline nano-spine array on FeVO4 nanobelts as high-performance rechargeable aluminum-ion battery cathode[J]. Appl Surface Sci, 2022, 591: 153157.

    [12] [12] JENA P, SUN Q. Theory-guided discovery of novel materials[J]J Phys Chem Lett, 2021, 12(28): 6499-6513.

    [13] [13] WANG Z, CAI Junfei, HAN Yanqiang, et al. Computational screening of spinel structure cathodes for Li-ion battery with low expansion and rapid ion kinetics[J]. Comput Mater Sci, 2022, 204: 111187.

    [14] [14] PATIL M A, TAGADE Piyush, KRISHNAN S H, et al. A novel multistage support vector machine based approach for li ion battery remaining useful life estimation[J]. Appl Energy, 2012, 159: 285-297.

    [15] [15] SAAL J E, KIRKLIN S, AYKOL M, et al. Materials design and discovery with high-throughput density functional theory: The open quantum materials database (OQMD)[J]. J Materiomics, 2013, 65(11): 1501-1509.

    [16] [16] WANG Z, YUAN C, LI X. Lithium battery state-of-health estimation via differential thermal voltammetry with gaussian process regression[J]. IEEE Transact Transport Electrific, 2021, 7(1): 16-25.

    [17] [17] ?LVAREZ ANT?N J C, GARC?A NIETO P J, BLANCO VIEJO C, et al. Support vector machines used to estimate the battery state of charge[J]. IEEE Transact Power Electron, 2013, 28(12): 5919-5926.

    [18] [18] JIANG Z, LI J, YANG Y, et al. Machine-learning-revealed statistics of the particle-carbon/binder detachment in lithium-ion battery cathodes[J]. Nat Commun, 2020, 11(1): 2310.

    [19] [19] WANG C, FU K, KAMMAMPATA S P, et al. Garnet-type solid-state electrolytes: Materials, interfaces, and batteries[J]. Chem Rev, 2020, 120(10): 4257.

    [20] [20] CAI J, WANG Z, WU S, et al. A machine learning shortcut for screening the spinel structures of Mg/Zn ion battery cathodes with a high conductivity and rapid ion kinetics[J]. Energy Storage Mater, 2021, 42: 277-285.

    [21] [21] WANG Z, LI X, HAN Y, et al. Harnessing artificial intelligence to holistic design and identification for solid electrolytes[J]. Nano Energy, 2021, 89: 106337.

    [22] [22] ZHAO F, LI Y, WANG X, et al. Lithium-ion batteries state of charge prediction of electric vehicles using rnns-cnns neural networks[J]. IEEE Access, 2020, 8: 98168-98180.

    [23] [23] DAI H, ZHAO G, LIN M, et al. A novel estimation method for the state of health of lithium-ion battery using prior knowledge-based neural network and markov chain[J]. IEEE Transac Ind Electron, 2019, 66(10): 7706-7716.

    [24] [24] LI P, ZHANG Z, XIONG Q, et al. State-of-health estimation and remaining useful life prediction for the lithium-ion battery based on a variant long short term memory neural network[J]. J Power Sources, 2020, 459: 228069.

    [25] [25] SHI S, TU Z, ZOU X, et al. Applying data-driven machine learning to studying electrochemical energy storage materials[J]. Energy Storage Sci Technol, 2022, 11(3): 739.

    [26] [26] XIE Y, CHENG X. Review of state estimation of lithium-ion battery with machine learning[J]. Automotive Eng, 2021, 43(11): 1720-1729.

    [27] [27] ZHANG H, WANG Z, CAI J, et al. Machine-learning-enabled tricks of

    [28] [28] BATRA R, SONG L, RAMPRASAD R. Emerging materials intelligence ecosystems propelled by machine learning[J]. Nat Rev Mater, 2021, 6(8): 655-678.

    [29] [29] MORRIS M D, MITCHELL T J. Exploratory designs for computational experiments[J]. J Statist Plan Inference, 1995, 43(3): 381-402.

    [30] [30] KIRKLIN S, SAAL J E, MEREDIG B, et al. The open quantum materials database (OQMD): Assessing the accuracy of DFT formation energies[J]. npj Comput Mater, 2015, 1(1): 15010.

    [31] [31] EL MEJDOUBI A, CHAOUI H, SABOR J, et al. Remaining useful life prognosis of supercapacitors under temperature and voltage aging conditions[J]. IEEE Transact Ind Electron, 2018, 65(5): 4357-4367.

    [32] [32] BERGERHOFF G, HUNDT R, SIEVERS R, et al. The inorganic crystal structure data base[J]. J Chem Inform Computer Sci, 1983, 23(2): 66-69.

    [33] [33] ZAGORAC D, M?LLER H, RUEHL S, et al. Recent developments in the inorganic crystal structure database: Theoretical crystal structure data and related features[J]. J Appl Crystallogr, 2019, 52(5): 918-925.

    [34] [34] VILLARS P, BERNDT M, BRANDENBURG K, et al. The pauling file, binaries edition[J]. J Alloys Compd, 2004, 367(1): 293-297.

    [35] [35] JAIN A, NG S P, HAUTIER G, et al. Commentary: The materials project: A materials genome approach to accelerating materials innovation[J]. APL Mater, 2013, 1(1): 011002.

    [36] [36] CALDERON C E, PLATA J J, TOHER C, et al. The AFLOW standard for high-throughput materials science calculations[J]. Comput Mater Sci, 2015, 108: 233-238.

    [37] [37] GROOM C R, BRUNO I J, LIGHTFOOT M P, et al. The cambridge structural database[J]. Acta Crystallogr Section B, 2016, 72(2): 171-179.

    [38] [38] PENCE H E, WILLIAMS A. ChemSpider: An online chemical information resource[J]. J Chem Educat, 2010, 87(11): 1123-1124.

    [39] [39] QUIR?S M, GRA?ULIS S, GIRDZIJAUSKAIT? S, et al. Using SMILES strings for the description of chemical connectivity in the crystallography open database[J]. J Cheminform, 2018, 10(1): 23.

    [40] [40] SCHMIDT J, MARQUES M R G, BOTTI S, et al. Recent advances and applications of machine learning in solid-state materials science[J]. npj Comput Mater, 2019, 5(1): 83.

    [41] [41] SUN S. A survey of multi-view machine learning[J]. Neural Comput Applic, 2013, 23(7): 2031-2038.

    [42] [42] ALOM M Z, TAHAT M, YAKOPCIC C, et al. A state-of-the-art survey on deep learning theory and architectures[J]. Electronics, 2019, 8(3): 292.

    [43] [43] ALZUBAIDI L, ZHANG Jinglan, HUMAIDI A J, et al. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions[J]. J Big Data, 2021, 8(1): 53.

    [44] [44] L?NGKVIST M, KARLSSON L, LOUTFI A. A review of unsupervised feature learning and deep learning for time-series modeling[J]. Pattern Recognition Lett, 2014, 42: 11-24.

    [45] [45] SAXENA A, PRASAD M, GUPTA A, et al. A review of clustering techniques and developments[J]. Neurocomputing, 2017, 267: 664-681.

    [46] [46] EMMERT-STREIB F, DEHMER M. High-dimensional LASSO-based computational regression models: Regularization, shrinkage, and selection[J]. Mach Learn Knowl Extract, 2019, 1(1): 359-383.

    [47] [47] LI Z, SILLANP?? M J. Overview of LASSO-related penalized regression methods for quantitative trait mapping and genomic selection[J]. Theoret Appl Genet, 2012, 125(3): 419-435.

    [48] [48] YOSHIDA T, HONGO K, MAEZONOR. First-principles study of structural transitions in linio2 and high-throughput screening for long life battery[J]. J Phys Chem C, 2019, 123(23): 14126-14131.

    [49] [49] MIN Y, YUAN H, WANG W, et al. Design of heterostructures of mxene/two-dimensional organic frameworks for Na-O2 batteries with a new mechanism and a new descriptor[J]. J Phys Chem Lett, 2021, 12(11): 2742-2748.

    [50] [50] ESTERHUIZEN J A, GOLDSMITH B R, LINIC S. Interpretable machine learning for knowledge generation in heterogeneous catalysis[J]. Nat Catal, 2022, 5(3): 175-184.

    [51] [51] PAVLOU M, AMBLER G, SEAMAN S, et al. Review and evaluation of penalised regression methods for risk prediction in low-dimensional data with few events[J]. Statist Med, 2016, 35(7): 1159-1177.

    [52] [52] SEVERSON K A, ATTIA P M, JIN Norman, et al. Data-driven prediction of battery cycle life before capacity degradation[J]. Nat Energy, 2019, 4(5): 383.

    [53] [53] JIANG B, GENT W E, MOHR F, et al. Bayesian learning for rapid prediction of lithium-ion battery-cycling protocols[J]. Joule, 2021, 5(12): 3187-3203.

    [54] [54] ZHOU Y, KANTARCIOGLU M, THURAISINGHAM B. Sparse Bayesian Adversarial Learning Using Relevance Vector Machine Ensembles[C]//2012 IEEE 12th International Conference on Data Mining, 2012: 1206-1211. Brussels, Belgium

    [55] [55] AFSHARI S S, CUI S, XU X, et al. Remaining useful life early prediction of batteries based on the differential voltage and differential capacity curves[J]. IEEE T Instrum Meas, 2022, 71: 1-9.

    [56] [56] HU C, JAIN G, SCHMIDT C, et al. Online estimation of lithium-ion battery capacity using sparse Bayesian learning[J]. J Power Sources, 2015, 289: 105-113.

    [57] [57] ZHOU J, LIU D, PENG Y, et al. Combined Sparse Bayesian Learning Strategy for Remaining Useful Life Forecasting of Lithium-ion Battery[C]//2012 Second International Conference on Instrumentation, Measurement, Computer, Communication and Control, 2012: 457-461. Harbin, China

    [58] [58] JAFARI M, BROWN L E, GAUCHIA L. Hierarchical bayesian model for probabilistic analysis of electric vehicle battery degradation[J]. IEEE Transact Transpor Electrif, 2019, 5(4): 1254-1267.

    [59] [59] SCHULZ E, SPEEKENBRINK M, KRAUSEA. A tutorial on Gaussian process regression: Modelling, exploring, and exploiting functions[J]. J Math Psychol, 2018, 85: 1-16.

    [60] [60] RICHARDSON R R, OSBORNE M A, HOWEY D A. Gaussian process regression for forecasting battery state of health[J]. J Power Sources, 2017, 357: 209-219.

    [61] [61] REN J, CAI J, LI J. High precision implicit function learning for forecasting supercapacitor state of health based on Gaussian process regression[J]. Scientif Rep, 2021, 11(1): 12112.

    [62] [62] DERINGER V L, BART?K A P, BERNSTEIN N, et al. Gaussian process regression for materials and molecules[J]. Chem Rev, 2021, 121(16): 10073-10141.

    [63] [63] HA M, HAJIBABAEIAmir, KIM Dong Yeon, et al. Al-doping driven suppression of capacity and voltage fadings in 4d-element containing Li-ion-battery cathode materials: machine learning and density functional theory[J]. Adv Energy Mater, 2022, 12(30): 2201497.

    [64] [64] LI X, WANG Z, YAN J. Prognostic health condition for lithium battery using the partial incremental capacity and gaussian process regression[J]. J Power Sources, 2019, 421: 56-67.

    [65] [65] LYU Z, GAO R, LIX. A partial charging curve-based data-fusion- model method for capacity estimation of Li-ion battery[J]. J Power Sources, 2021, 483: 229131.

    [66] [66] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet Classification with Deep Convolutional Neural Networks//Advances in Neural Information Processing Systems[C]//2012. https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

    [67] [67] SCHMIDHUBER J. Deep learning in neural networks: An overview[J]. Neural Networks, 2015, 61: 85-117.

    [68] [68] LU X, XIE Z, WU X, et al. Hydrogen storage metal-organic framework classification models based on crystal graph convolutional neural networks[J]. Chem Eng Sci, 2022, 259: 117813.

    [69] [69] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.

    [70] [70] VIDAL C, MALYSZ P, KOLLMEYER P, et al. Machine learning applied to electrified vehicle battery state of charge and state of health estimation: State-of-the-art[J]. IEEE Access, 2020, 8: 52796-52814.

    [71] [71] KIM B, LEE S, KIMJ. Inverse design of porous materials using artificial neural networks[J]. Sci Adv, 2020, 6(1): 9324.

    [72] [72] GOH G B, HODAS N O, VISHNUA. Deep learning for computational chemistry[J]. J Comput Chem, 2017, 38(16): 1291-1307.

    [73] [73] SO S, BADLOE T, NOH J, et al. Deep learning enabled inverse design in nanophotonics[J]. Nanophotonics, 2020, 9(5): 1041-1057.

    [74] [74] HE W, WILLIARD N, CHEN C, et al. State of charge estimation for Li-ion batteries using neural network modeling and unscented Kalman filter-based error cancellation[J]. Int J Electr Power Energy Systems, 2014, 62: 783-791.

    [75] [75] SILVER D, HUANG A, MADDISON C, et al. “Mastering the game of Go with deep neural networks and tree search[J]. Nature, 2016, 529(7587): 484-489

    [76] [76] GU J, WANG Zhenhua, KUEN Jason, et al. Recent advances in convolutional neural networks[J]. Pattern Recognit, 2018, 77: 354-377.

    [77] [77] ZHOU D-X. Universality of deep convolutional neural networks[J]. Appl Comput Harmon Anal, 2020, 48(2): 787-794.

    [78] [78] HU W, HUANG Y, WEI L, et al. Deep convolutional neural networks for hyperspectral image classification[J]. J Sens, 2015, 2015: 258619.

    [79] [79] SUN Y, XUE B, ZHANG M, et al. Evolving deep convolutional neural networks for image classification[J]. IEEE Transact Evol Comput, 2020, 24(2): 394-407.

    [80] [80] YAGHOOBI M, ALAEI M. Machine learning for compositional disorder: A comparison between different descriptors and machine learning frameworks[J]. Computat Mater Sci, 2022, 207: 111284.

    [81] [81] JU J H, SEO Seunghwan, BAEK Sungpyo, et al. Two-dimensional mxene synapse for brain-inspired neuromorphic computing[J]. Small, 2021, 17(34): 2102595.

    [82] [82] NARAYAN B, NARAYAN A. Machine learning non-Hermitian topological phases[J]. Phys Rev B, 2021, 103(3): 035413.

    [83] [83] LYM J, GU G H, JUNG Y, et al. Lattice convolutional neural network modeling of adsorbate coverage effects[J]. J Phys Chem C, 2019, 123(31): 18951-18959.

    [84] [84] LEE J-W, PARK W B, LEE J H, et al. A deep-learning technique for phase identification in multiphase inorganic compounds using synthetic XRD powder patterns[J]. Nat Commun, 2020, 11(1): 86.

    [85] [85] HORWATH J P, ZAKHAROV D N, M?GRET R, et al. Understanding important features of deep learning models for segmentation of high-resolution transmission electron microscopy images[J]. npj Comput Mater, 2020, 6(1): 108.

    [86] [86] LIM B, BELLEC E, DUPRAZ M, et al. A convolutional neural network for defect classification in Bragg coherent X-ray diffraction[J]. npj Comput Mater, 2021, 7(1): 115.

    [87] [87] KOPP R, JOSEPH J, NI X, et al. Deep learning unlocks X-ray microtomography segmentation of multiclass microdamage in heterogeneous materials[J]. Adv Mater, 2022, 34(11): 2107817.

    [88] [88] DONG H, BUTLER K T, MATRAS D, et al. A deep convolutional neural network for real-time full profile analysis of big powder diffraction data[J]. npj Comput Mater, 2021, 7(1): 74.

    [89] [89] SAIDI W A, SHADID W, CASTELLI I E. Machine-learning structural and electronic properties of metal halide perovskites using a hierarchical convolutional neural network[J]. npj Comput Mater, 2020, 6(1): 36.

    [90] [90] DONG Y, WU C, ZHANG C, et al. Bandgap prediction by deep learning in configurationally hybridized graphene and boron nitride[J]. npj Comput Mater, 2019, 5(1): 26.

    [91] [91] WANG S H, SUN J, PHILLIPS P, et al. Polarimetric synthetic aperture radar image segmentation by convolutional neural network using graphical processing units[J]. J Real-Time Image Proc, 2018, 15(3): 631-642.

    [92] [92] XIE T, GROSSMAN J. Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties[J]. Phys. Rev. Lett., 2018, 4(14): 145301.

    [93] [93] AHMAD Z, XIE T, MAHESHWARI C, et al. Machine learning enabled computational screening of inorganic solid electrolytes for suppression of dendrite formation in lithium metal anodes[J]. ACS Cent Sci, 2018, 4(8): 996-1006.

    [94] [94] ZHOU L, YAO A M, WU Y, et al. Machine learning assisted prediction of cathode materials for Zn-ion batteries[J]. Adv Theory Simulat, 2021, 4(9): 2100196.

    [95] [95] ZHOU J, SHEN LEI, COSTA M D, et al. 2DMatPedia, an open computational database of two-dimensional materials from top-down and bottom-up approaches[J]. Scientif Data, 2019, 6(1): 86.

    [96] [96] WU S, WANG Z, ZHANG H, et al. Deep learning accelerates the discovery of two-dimensional catalysts for hydrogen evolution reaction[J]. Energy Environ Mater, 2021. Doi: 10.1002/eem2.12259.

    [97] [97] DONG X, YU Z, CAO W, et al. A survey on ensemble learning[J]. Frontiers Comput Sci, 2020, 14(2): 241-258.

    [98] [98] WANG Z, HAN Y, LIN X, et al. An Ensemble Learning Platform for the Large-Scale Exploration of New Double Perovskites[J]. ACS Appl Mater Interfaces, 2022, 14(1): 717-725.

    [99] [99] LI Y, ZOU C, BERECIBAR M, et a. Random forest regression for online capacity estimation of lithium-ion batteries[J]. Appl Energy, 2018, 232: 197-210.

    [100] [100] LIN M, WU D, MENG J, et al. A multi-feature-based multi-model fusion method for state of health estimation of lithium-ion batteries[J]. J Power Sources, 2022, 518: 230774.

    [101] [101] SHANDIZ M A, GAUVIN R. Application of machine learning methods for the prediction of crystal system of cathode materials in lithium-ion batteries[J]. Comput Mater Sci, 2016, 117: 270-278.

    [102] [102] CHEN A, WANG Zhilong, ZHANG Xu, et al. Accelerated mining of 2d van der waals heterojunctions by integrating supervised and unsupervised learning[J]. Chem Mater, 2022, 34(12): 5571-5583.

    [103] [103] WANG Z, ZHANG H, LI J. Accelerated discovery of stable spinels in energy systems via machine learning[J]. Nano Energy, 2021, 81: 105665.

    [104] [104] SUN S, OUYANG R, ZHANG B, et al. Data-driven discovery of formulas by symbolic regression[J]. MRS Bull, 2019, 44(7): 559-564.

    [105] [105] WANG Y, WAGNER N, RONDINELLI J M. Symbolic regression in materials science[J]. MRS Commun, 2019, 9(3): 793-805.

    [106] [106] LIU Y, ZOU X, YANG Z, et al. Machine learning embedded with materials domain knowledge[J]. J Chin Ceram Soc, 2022, 50(3): 863.

    [107] [107] SWAIN M C, COLE J M. ChemDataExtractor: A toolkit for automated extraction of chemical information from the scientific literature[J]. J Chem Inform Model, 2016, 56(10): 1894-1904.

    [108] [108] HUANG S, COLE J M. A database of battery materials auto-generated using ChemDataExtractor[J]. Scientif Data, 2020, 7(1): 260.

    [109] [109] HE T, SUN W, HUO H, et al. Similarity of precursors in solid-state synthesis as text-mined from scientific literature[J]. Chem Mater, 2020, 32(18): 7861-7873.

    [110] [110] KONONOVA O, HUO Haoyan, HE Tanjin, et al. Text-mined dataset of inorganic materials synthesis recipes[J]. Scientif Data, 2019, 6(1): 203.

    [111] [111] SEGLER M H S, PREUSS M, WALLER M P. Planning chemical syntheses with deep neural networks and symbolic AI[J]. Nature, 2018, 555(7698): 604-610.

    [112] [112] ATTIA P M, GROVER Aditya, JIN Norman, et al. Closed-loop optimization of fast-charging protocols for batteries with machine learning[J]. Nature, 2020, 578(7795): 397-402.

    [113] [113] LU A-Y, MARTINS L G P, SHEN Pin-Chun, et al. Unraveling the correlation between raman and photoluminescence in monolayer MoS2 through machine learning models[J]. Adv Mater, 2022, 34(34): 2202911.

    [114] [114] KONG S, RICCI F, GUEVARRA D, et al. Density of states prediction for materials discovery via contrastive learning from probabilistic embeddings[J]. Nat Commun, 2022, 13(1): 949.

    [115] [115] WANG Z, HAN Y, CAI J, et al. Vision for energy material design: A roadmap for integrated data-driven modeling[J]. J Energy Chem, 2022, 71: 56-62.

    Tools

    Get Citation

    Copy Citation Text

    LI Jinjin, CAI Junfei, HAN Yanqiang, WANG Zhilong, CHEN An, YE Simin. Macro-/Micro-Design of Electrochemical Energy Battery Based on Machine Learning[J]. Journal of the Chinese Ceramic Society, 2023, 51(2): 438

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Aug. 4, 2022

    Accepted: --

    Published Online: Mar. 11, 2023

    The Author Email: Jinjin LI (lijinjin@sjtu.edu.cn)

    DOI:10.14062/j.issn.0454-5648.20220639

    Topics