Journal of Synthetic Crystals, Volume. 49, Issue 5, 838(2020)
Efficient Perovskite Solar Cells on Hydrophobic Carrier Transporting Layers by Anchoring Strategy
[1] [1] Kojima, Akihiro, Teshima, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J].Journal of the American Chemical Society,131(17): 6050-6051.
[2] [2] Jiang Q, Zhao Y, Zhang X W, et al. Surface passivation of perovskite film for efficient solar cells[J].Nature Photonics,2019,13(7): 460-466.
[3] [3] Kim M, Lee T K, Choi I, et al. Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells[J].Joule,2019,3(9): 2179-2192.
[4] [4] Green M A, Ho-Baillie A, Snaith H J. The emergence of perovskite solar cells[J].Nature Photonics,2014,8(7): 506-514.
[5] [5] Chen W, Wu Y, Yue Y, et al. Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers[J].Science,2015,350(6263): 944-948.
[6] [6] Park N G, Gratzel M, Miyasaka T, et al. Towards stable and commercially available perovskite solar cells[J].Nature Energy,2016,1: 16152.
[7] [7] Nie W, Tsai H, Blancon J C, et al. Critical role of interface and crystallinity on the performance and photostability of perovskite solar cell on nickel oxide[J].Advanced Materials,2017,30(5): 1703879.
[8] [8] Chen W, Liu F, Feng X, et al. Cesium doped NiOx as an efficient hole extraction layer for inverted planar perovskite solar cells[J].Advanced Energy Materials,2017,7(19): 1700722.
[9] [9] Liu T, Chen K, Hu Q, et al. Inverted perovskite solar cells: progresses and perspectives[J].Advanced Energy Materials,2016, 6(17): 1600457.
[10] [10] Wang Y K, Yuan Z C, Shi G Z, et al. Dopant-free spiro-triphenylamine/fluorene as hole-transporting material for perovskite solar cells with enhanced efficiency and stability[J].Advanced Functional Materials,2016,26(9): 1375-1381.
[11] [11] Akin S, Altintas Y, Mutlugun E, et al. Cesiumlead based inorganic perovskite quantum-dots as interfacial layer for highly stable perovskite solar cells with exceeding 21% efficiency[J].Nano Energy,2019,60: 557-566.
[12] [12] Luo D, Yang W, Wang Z. Enhanced photovoltage for inverted planar heterojunction perovskite solar cells[J].Science,2018, 360(6396): 1442-1446.
[13] [13] Zheng X, Deng Y, Chen B, et al. Dual functions of crystallization control and defect passivation enabled by sulfonic zwitterions for stable and efficient perovskite solar cells[J].Advanced Materials,2018,30(52): 1803428.
[14] [14] Ru P B, Bi E B, Zhang Y, et al. High electron affinity enables fast hole extraction for efficient flexible inverted perovskite solar cells[J].Advanced Energy Materials,2020,10(12): 1903487.
[15] [15] Liu Z L, Li S B, Wang X, et al. Interfacial engineering of front-contact with finely tuned polymer interlayers for high-performance large-area flexible perovskite solar cells[J].Nano Energy,2019,62: 734-744.
[16] [16] Li L B, Zhang S S, Yang Z C, et al. Recent advances of flexible perovskite solar cells[J].Journal of Energy Chemistry,2018,27(3): 673-689.
[17] [17] Florent S, Werner Jérémie, Kamino B A, et al. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency[J].Nature Materials,2018,17(9): 820.
[18] [18] Kamino B, Paviet-Salomon B, Moon S J, et al. Low temperature screen-print metallization for the scale up of 2-terminal perovskite-silicon tandems[J].ACS Applied Energy Materials,2019,2(5): 3815-3821.
[19] [19] Chen B, Yu Z S, Liu K, et al. Grain engineering for perovskite/silicon monolithic tandem solar cells with efficiency of 25.4%[J].Joule,2019,3(1): 177-190.
[20] [20] Zhou H P, Chen Q, Li G, et al. Interface engineering of highly efficient perovskite solar cells[J].Science,2014,345(6196): 542-546.
[21] [21] Laura Calio, Kazim S, Michael Grtzel, et al. Hole-transport materials for perovskite solar cells[J].Angewandte Chemie International Edition,2016,55(47): 14522-14545.
[22] [22] Yang G, Tao H, Qin P L, et al. Recent progress in electron transport layers for efficient perovskite solar cells[J].Journal of Materials Chemistry A,2016,4(11): 3970-3990.
[23] [23] Fan L, Ding Y, Luo J S, et al. Elucidating the role of chlorine in perovskite solar cells[J].J. Mater. Chem. A,2017,5(16): 7423-7432.
[24] [24] Fan L, Ding Y, Shi B, et al. Novel insight into the function of PC61BM in efficient planar perovskite solar cells[J].Nano Energy,2016,27: 561-568.
[25] [25] You J, Meng L, Song T, et al. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers[J].Nature Nanotechnology,2015,11(1): 75.
[26] [26] Jiang Q, Zhang L Q, Wang H L, et al. Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells[J].Nature Energy,2016,1: 16177.
[27] [27] Wu Y Z, Yang X D, Chen W, et al. Perovskite solar cells with 18.21% efficiency and area over 1 cm2 fabricated by heterojunction engineering[J].Nature Energy,2016,1(11): 16148.
[28] [28] Jiang Q, Zhang X W, You J B. SnO2: a wonderful electron transport layer for perovskite solar cells[J].Small,2018,14(31): 1801154.
[29] [29] Saliba M, Orlandi S, Matsui T, et al. A molecularly engineered hole-transporting material for efficient perovskite solar cells[J]. Nature Energy,2016,1(2): 15017.
[30] [30] Liu J, Wu Y Z, Qin C J, et al. A dopant-free hole-transporting material for efficient and stable perovskite solar cells[J].Energy & Environmental Science,2014,7(9): 2963.
[31] [31] Zhang H, Wang H, Chen W, et al. CuGaO2: a promising inorganic hole-transporting material for highly efficient and stable perovskite solar cells[J].Advanced Materials,2016,29(8): 1604984.
[32] [32] Arora N, Dar M I, Hinderhofer A, et al. Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%[J].Science,2017,358(6364): 768-771.
[33] [33] Yu Z, Sun L C. Inorganic hole-transporting materials for perovskite solar cells[J].Small Methods,2018,2(2): 1700280.
[34] [34] Chen J, Park N G. Inorganic hole transporting materials for stable and high efficiency perovskite solar cells[J].The Journal of Physical Chemistry C,2018,122(25): 14039-14063.
[35] [35] Heo J H, Han H J, Kim D, et al. Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency[J].Energy & Environmental Science,2015,8(5): 1602-1608.
[36] [36] Kim, Jinseck, Lee, et al. Dopant-free polymeric hole transport materials for highly efficient and stable perovskite solar cells[J]. Energy & Environmental Science Ees, 2016,9(7): 2326-2333.
[37] [37] Yang D, Zhou X, Yang R X, et al. Surface optimization to eliminate hysteresis for record efficiency planar perovskite solar cells[J].Energy & Environmental Science,2016,9(10): 3071-3078.
[38] [38] Liu Z, Kruckemeier L, Krogmeier B, et al. Open-circuit voltages exceeding 1.26 V in planar methylammonium lead iodide perovskite solar cells[J].ACS Energy Letters,2018,4(1): 110-117.
[39] [39] Bi C, Wang Q, Shao Y C, et al. Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells[J].Nature Communications,2015,6: 7747.
[40] [40] Martin S, Wolff C M, Márquez José A, et al. Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells[J].Nature Energy,2018,3(10): 847.
[41] [41] Lee J, Kang H, Kim G, et al. Achieving large-area planar perovskite solar cells by introducing an interfacial compatibilizer[J]. Advanced Materials,2017,29(22): 1606363.1-1606363.8.
[42] [42] Serpetzoglou E, Konidakis I, Kakavelakis G, et al. Improved carrier transport in perovskite solar cells probed by femtosecond transient absorption spectroscopy[J].ACS Applied Materials & Interfaces,2017,9(50): 43910-43919.
[43] [43] You J, Guo F, Qiu S D, et al. The fabrication of homogeneous perovskite films on non-wetting interfaces enabled by physical modification[J].Journal of Energy Chemistry,2019,38: 192-198.
[44] [44] Li D, Neumann A W. Contact angles on hydrophobic solid surfaces and their interpretation[J].Journal of Colloid & Interface Science,1992,148(1): 190-200.
[45] [45] Ip S W, Toguri J M. The equivalency of surface tension, surface energy and surface free energy[J].Journal of Materials Science,1994,29(3): 688-692.
[46] [46] Liu X X, Cheng Y H, Liu C, et al. 20.7% highly reproducible inverted planar perovskite solar cells with enhanced fill factor and eliminated hysteresis[J].Energy & Environmental Science,2019,12(5): 1622-1633.
[47] [47] Liu L, Tang Z G, Xin C G, et al. Acetate anion assisted crystal orientation reconstruction in organic-inorganic lead halide perovskite[J].ACS Applied Energy Materials,2018,1(6): 2730-2739.
[48] [48] Chao L F, Xia Y D, Li B X, et al. Room-temperature molten salt for facile fabrication of efficient and stable perovskite solar cells in ambient air[J].CheM, 2019,5(4): 995-1006.
[49] [49] Yang D, Yang R X, Zhang J, et al. High efficiency flexible perovskite solar cells using superior low temperature TiO2[J].Energy & Environmental Science,2015,8(11): 3208-3214.
[50] [50] Liu D Y, Li Y, Yuan J Y, et al. Improved performance of inverted planar perovskite solar cells with F4-TCNQ doped PEDOT: PSS hole transport layers[J].Journal of Materials Chemistry A,2017,5(12): 5701-5708.
Get Citation
Copy Citation Text
TIAN Ying, WU Yan, XU Yuzeng, HOU Minna, DING Yi, HOU Guofu, ZHAO Ying, ZHANG Xiaodan. Efficient Perovskite Solar Cells on Hydrophobic Carrier Transporting Layers by Anchoring Strategy[J]. Journal of Synthetic Crystals, 2020, 49(5): 838