Ultrafast Science, Volume. 4, Issue 1, 0075(2024)
Gas and Droplet Dynamics for Filament-Assisted Free-Space Optical Communication through Clouds
[1] [1] Khalighi MA, Uysal M. Survey on free space optical communication: A communication theory perspective. IEEE Commun Surv Tutor. 2014;16(4):2231–2258.
[2] [2] Cao Z, Zhang X, Osnabrugge G, Li J, Vellekoop IM, Koonen AM. Reconfigurable beam system for non-line-of-sight free-space optical communication. Light Sci Appl. 2019;8(1):69.
[3] [3] Cheng K, Lu G, Zhu B, Shu L. Polarization changes of partially-coherent Airy-Gaussian beams in a slanted turbulent atmosphere. Chinese Opt. 2021;14(2):409–417.
[4] [4] Boroson DM, Robinson BS, Murphy DV, Burianek DA, Khatri F, Kovalik JM, Sodnik Z, Cornwell DM. Overview and results of the lunar laser communication demonstration. Free-Space Laser Commun Atmospheric Propag XXVI. 2014;8971:213–223.
[5] [5] Sodnik Z, Furch B, Lutz H, Free-space laser communication activities in Europe: SILEX and beyond. Paper presented at: LEOS 2006-19th Annual Meeting of the IEEE Lasers and Electro-Optics Society; 2006; Montreal, Quebec, Canada.
[6] [6] Samain E, Phung D, Maurice N, Albanesse D, Mariey H, Aimar M, Lagarde G, Vedrenne N, Velluet M, Artaud G. First free space optical communication in Europe between SOTA and MeO optical ground station. Paper presented at: IEEE International Conference on Space Optical Systems and Applications (ICSOS); 2015; New Orleans, LA, USA.
[8] [8] Nauerth S, Moll F, Rau M, Fuchs C, Horwath J, Frick S, Weinfurter H. Air-to-ground quantum communication. Nat Photonics. 2013;7(5):382–386.
[9] [9] Yin J, Cao Y, Li Y, Liao S, Zhang L, Ren J, Cai W, Liu W, Li B, Dai H, et al. Satellite-based entanglement distribution over 1200 kilometers. Science. 2017;356(6343):1140–1144.
[10] [10] Takenaka H, Carrasco-Casado A, Fujiwara M, Kitamura M, Sasaki M, Toyoshima M. Satellite-to-ground quantum-limited communication using a 50-kg-class microsatellite. Nat Photonics. 2017;11(8):502–508.
[11] [11] Portnoi M, Haigh PA, Macdonald TJ, Ambroz F, Parkin IP, Darwazeh I, Papakonstantinou I. Bandwidth limits of luminescent solar concentrators as detectors in free-space optical communication systems. Light Sci Appl. 2021;10(1):3.
[12] [12] Wan Z, Shen Y, Wang Z, Shi Z, Liu Q, Fu X. Divergence-degenerate spatial multiplexing towards future ultrahigh capacity, low error-rate optical communications. Light Sci Appl. 2022;11(1):144.
[13] [13] Horst Y, Bitachon BI, Kulmer L, Brun J, Blatter T, Conan J-M, Montmerle-Bonnefois A, Montri J, Sorrente B, Lim CB. Tbit/s line-rate satellite feeder links enabled by coherent modulation and full-adaptive optics. Light Sci Appl. 2023;12(1):153.
[14] [14] Dinu M, Ahrens R, Sochor T, Dailey J, Prego R Jr, Berry M, Crandall L, Kolchmeyer J, Monte A, Engelberth J. Qualification and performance of a high-efficiency laser transmitter for deep-space optical communications. Free-Space Laser Commun XXXIV. 2022;11993:129–140.
[15] [15] Israel DJ, Edwards BL, Butler RL, Moores JD, Piazzolla S, Du Toit N, Braatz L. Early results from NASA’s laser communications relay demonstration (LCRD) experiment program. Free-Space Laser Commun XXXV. 2023;12413:10–24.
[16] [16] Kwok HS, Rossi T, Lau W, Shaw D. Enhanced transmission in CO2-laser–aerosol interactions. Opt Lett. 1988;13(3):192–194.
[17] [17] Pustovalov V, Khorunzhii I. Thermal and optical processes in shattering water aerosol droplets by intense optical radiation. Int J Heat Mass Transf. 1992;35(2):583–589.
[19] [19] Couairon A, Mysyrowicz A. Femtosecond filamentation in transparent media. Phys Rep. 2007;441(2-4):47–189.
[21] [21] Chen Y-H, Varma S, Antonsen T, Milchberg H. Direct measurement of the electron density of extended femtosecond laser pulse-induced filaments. Phys Rev Lett. 2010;105(21): Article 215005.
[22] [22] Rodriguez M, Bourayou R, Méjean G, Kasparian J, Yu J, Salmon E, Scholz A, Stecklum B, Eislöffel J, Laux U, et al. Kilometer-range nonlinear propagation of femtosecond laser pulses. Phys Rev E. 2004;69(3): Article 036607.
[23] [23] Kasparian J, Rodríguez M, Méjean G, Yu J, Salmon E, Wille H, Bourayou R, Frey S, André Y-B, Mysyrowicz A. White-light filaments for atmospheric analysis. Science. 2003;301(5629):61–64.
[24] [24] Mills M, Kolesik M, Christodoulides D. Dressed optical filaments. Opt Lett. 2013;38(1):25–27.
[25] [25] Kammel R, Ackermann R, Thomas J, Götte J, Skupin S, Tünnermann A, Nolte S. Enhancing precision in fs-laser material processing by simultaneous spatial and temporal focusing. Light Sci Appl. 2014;3(5):e169.
[26] [26] Zang H, Li H, Zhang W, Fu Y, Chen S, Xu H, Li R. Robust and ultralow-energy-threshold ignition of a lean mixture by an ultrashort-pulsed laser in the filamentation regime. Light Sci Appl. 2021;10(1):49.
[27] [27] Liu Y, Yin F, Wang T-J, Leng Y, Li R, Xu Z, Chin SL. Stable, intense supercontinuum light generation at 1 kHz by electric field assisted femtosecond laser filamentation in air. Light Sci Appl. 2024;13(1):42.
[28] [28] Skupin S, Bergé L, Peschel U, Lederer F. Interaction of femtosecond light filaments with obscurants in aerosols. Phys Rev Lett. 2004;93(2): Article 023901.
[29] [29] Méjean G, Kasparian J, Yu J, Salmon E, Frey S, Wolf J-P, Skupin S, Vinçotte A, Nuter R, Champeaux S. Multifilamentation transmission through fog. Phys Rev E. 2005;72(2): Article 026611.
[30] [30] Kolesik M, Moloney JV. Self-healing femtosecond light filaments. Opt Lett. 2004;29(6):590–592.
[31] [31] Courvoisier F, Boutou V, Kasparian J, Salmon E, Méjean G, Yu J, Wolf J-P. Ultraintense light filaments transmitted through clouds. Appl Phys Lett. 2003;83(2):213–215.
[32] [32] Eisenmann S, Penano J, Sprangle P, Zigler A. Effect of an energy reservoir on the atmospheric propagation of laser-plasma filaments. Phys Rev Lett. 2008;100(15): Article 155003.
[33] [33] Goffin A, Tartaro A, Milchberg H. Quasi-steady-state air waveguide. Optica. 2023;10(4):505–506.
[34] [34] Goffin A, Larkin I, Tartaro A, Schweinsberg A, Valenzuela A, Rosenthal E, Milchberg H. Optical guiding in 50-meter-scale air waveguides. Phys Rev X. 2023;13(1): Article 011006.
[35] [35] Yan B, Liu H, Li C, Jiang X, Li X, Hou J, Zhang H, Lin W, Liu B, Liu J. Laser-filamentation-assisted 1.25 Gb/s video communication under harsh conditions. Opt Laser Technol. 2020;131: Article 106391.
[36] [36] Polynkin P, Kolesik M. Critical power for self-focusing in the case of ultrashort laser pulses. Phys Rev A. 2013;87(5): Article 053829.
[38] [38] Braun A, Korn G, Liu X, Du D, Squier J, Mourou G. Self-channeling of high-peak-power femtosecond laser pulses in air. Opt Lett. 1995;20(1):73–75.
[39] [39] Cheng Y-H, Wahlstrand J, Jhajj N, Milchberg H. The effect of long timescale gas dynamics on femtosecond filamentation. Opt Express. 2013;21(4):4740–4751.
[40] [40] Gladstone JH, Dale TP, XIV. Researches on the refraction, dispersion, and sensitiveness of liquids. Philos Trans R Soc Lond. 1863;153:317–343.
[41] [41] Qin X, Xiao X, Puri IK, Aggarwal SK. Effect of varying composition on temperature reconstructions obtained from refractive index measurements in flames. Combust Flame. 2002;128(1-2):121–132.
[42] [42] de la Cruz L, Schubert E, Mongin D, Klingebiel S, Schultze M, Metzger T, Michel K, Kasparian J, Wolf J.-P, High repetition rate ultrashort laser cuts a path through fog. Appl Phys Lett 2016;109(25):251105.
Get Citation
Copy Citation Text
Haiyi Liu, Jiawei Zheng, Huanyu Li, Jiayun Xue, Pengfei Qi, Xianzhu Liu, Lie Lin, Weiwei Liu, Huilin Jiang. Gas and Droplet Dynamics for Filament-Assisted Free-Space Optical Communication through Clouds[J]. Ultrafast Science, 2024, 4(1): 0075
Category: Research Articles
Received: Jun. 14, 2024
Accepted: Sep. 2, 2024
Published Online: Dec. 13, 2024
The Author Email: Qi Pengfei (qipengfei@nankai.edu.cn), Liu Xianzhu (liuxianzhu@cust.edu.cn)