Infrared and Laser Engineering, Volume. 51, Issue 4, 20220171(2022)

High-dynamic infrared small target detection based on double-neighborhood difference amplification method(Invited)

Shuai Yuan, Xiang Yan, Yugeng Zhang, and Hanlin Qin
Author Affiliations
  • School of Optoelectronic Engineering, Xidian University, Xi’an 710071, China
  • show less
    Figures & Tables(14)
    (a) Infrared image of the dark target and the local 3D gray image of the target; (b) Infrared image of the bright target and the local 3D gray image of the target
    (a) Working mode of sliding window and the division of multi-layer area; (b) A number of subwindows within a sliding window; (c) Schematic diagram of interpolation multiplication in four directions of the algorithm in this paper
    (a) Small size target detection; (b) Large size target detection
    Detection result of multi-scale bright and dark target by DDAM
    Flow chart of small object detection
    Detection results of nine algorithms for three groups of real infrared sequences
    TTSM construction diagram
    Nine algorithms for TTSM of three sets of real infrared sequences
    ROC curves of nine algorithms under three different scenes
    Detection results of DDAM in nine consecutive frames of complex scenes
    • Table 1. Three groups of test data parameters

      View table
      View in Article

      Table 1. Three groups of test data parameters

      SequencesImage resolutionImage numberTarget sizeTarget brightnessScenes description
      1400×560502×3-4×6Dark and brightComplex background interference
      2420×560903×4-6×9BrightStrong noise interference
      3512×6401156×9-9×9BrightStrong edge interference
    • Table 2. \begin{document}$ \overline{\mathrm{S}\mathrm{C}\mathrm{R}\mathrm{G}} $\end{document}, \begin{document}$ \overline{\mathrm{B}\mathrm{S}\mathrm{F}} $\end{document} and real time performance of nine algorithms in three groups of scenarios

      View table
      View in Article

      Table 2. \begin{document}$ \overline{\mathrm{S}\mathrm{C}\mathrm{R}\mathrm{G}} $\end{document}, \begin{document}$ \overline{\mathrm{B}\mathrm{S}\mathrm{F}} $\end{document} and real time performance of nine algorithms in three groups of scenarios

      Evaluation indicatorsSequencesTop-hatLCMMPCMRLCMTTLCMADMDDNGMDLCMDDAM
      $ \overline{\mathrm{S}\mathrm{C}\mathrm{R}\mathrm{G}} $110.564NaN45.296NaNNaN83.915305.688 NInf=1369.42 NInf=5342.158 NInf=6
      25.3522.2258.0162.4537.9158.991159.462 NInf=38169.824 NInf=40286.574NInf=38
      31.9390.53011.7580.90813.27814.809138.146 NInf=2663.864 NInf=3562.391 NInf=37
      $ \overline{\mathrm{B}\mathrm{S}\mathrm{F}} $11.2060.767 NInf=34.4270.721 NInf=14.394 NInf=413.60146.914 NInf=155.782 NInf=554.69 NInf=6
      21.3900.3583.2320.4372.2504.80673.152 NInf=3880.489 NInf=40135.201NInf=38
      31.3840.4456.2444.0556.15410.188107.484 NInf=2673.264 NInf=3583.793 NInf=37
      Time/s10.0190.1210.1356.3284.1010.0340.1620.1520.120
      20.0150.1140.1305.6133.5710.0310.1580.1480.113
      30.0150.1630.1927.6204.7990.0360.2270.2150.170
    • Table 3. Detection accuracy of nine algorithms in three groups of stypical cenarios

      View table
      View in Article

      Table 3. Detection accuracy of nine algorithms in three groups of stypical cenarios

      SequencesTPRTop-hatLCMMPCMRLCMTTLCMADMDDNGMDLCMDDAM
      1Pd-40.720NaN0.920NaNNaN0.7200.7400.7400.960
      Pd-30.760NaN0.960NaNNaN0.7400.7800.7800.960
      Pd-20.8200.4800.9600.7800.7600.7800.7800.7800.980
      2Pd-40.900NaN0.811NaN0.8440.7280.9440.9670.900
      Pd-30.9560.6780.8440.8110.9220.8220.9670.9670.989
      Pd-20.9780.8640.9660.9560.9890.9780.9780.9730.991
      3Pd-40.2380.1030.276NaN0.3530.0360.4130.2010.370
      Pd-30.3700.1810.7850.3880.9740.9310.9820.9820.982
      Pd-20.9820.3710.9820.4740.9820.9820.9820.9820.982
    • Table 4. Average performance comparison of several target detection algorithms on twelve scences

      View table
      View in Article

      Table 4. Average performance comparison of several target detection algorithms on twelve scences

      AlgorithmsTop-hatLCMMPCMRLCMTTLCMADMDDNGMDLCMDDAM
      $ \overline{\mathrm{S}\mathrm{C}\mathrm{R}\mathrm{G}} $6.2516.10620.9762.4739.11237.572205.098205.036230.499
      $ \overline{\mathrm{B}\mathrm{S}\mathrm{F}} $1.4710.5274.9772.7384.27910.13876.39869.89593.388
      Time/s0.0160.1350.1576.5234.2180.0380.1840.1730.139
      TPR Pd-40.6090.4670.6730.4990.5720.5230.7030.6290.747
      TPR Pd-30.6670.5120.8630.6530.8920.8280.9050.9090.933
      TPR Pd-20.9100.6460.9250.7490.9230.9130.9260.9120.949
    Tools

    Get Citation

    Copy Citation Text

    Shuai Yuan, Xiang Yan, Yugeng Zhang, Hanlin Qin. High-dynamic infrared small target detection based on double-neighborhood difference amplification method(Invited)[J]. Infrared and Laser Engineering, 2022, 51(4): 20220171

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Special issue—Infrared detection and recognition technology under superspeed flow field

    Received: Jan. 10, 2022

    Accepted: Apr. 11, 2022

    Published Online: May. 18, 2022

    The Author Email:

    DOI:10.3788/IRLA20220171

    Topics