Laser & Optoelectronics Progress, Volume. 60, Issue 8, 0811003(2023)

Metasurface-Based Three-Dimensional Imaging Technique

Xiaoli Jing, Yongtian Wang, and Lingling Huang*
Author Affiliations
  • School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
  • show less
    References(84)

    [1] Zuo C, Zhang X L, Hu Y et al. Has 3D finally come of age? An introduction to 3D structured-light sensor[J]. Infrared and Laser Engineering, 49, 0303001(2020).

    [2] Levin A, Freeman W T, Durand F. Understanding camera trade-offs through a Bayesian analysis of light field projections[M]. Forsyth D, Torr P, Zisserman Z. Computer vision-ECCV 2008, 5305, 88-101(2008).

    [3] Chi H B, Duan H G, Hu Y Q. Application of metasurfaces in three-dimensonal imaging and display[J]. Optics and Precision Engineering, 30, 1775-1801(2022).

    [4] Huang L L, Wei Q S, Wang Y T. Development and applications of wavefront modulation technology based on new functional metasurfaces(Invited)[J]. Infrared and Laser Engineering, 48, 1002001(2019).

    [5] Neshev D N, Miroshnichenko A E. Enabling smart vision with metasurfaces[J]. Nature Photonics, 17, 26-35(2023).

    [6] Yu N F, Genevet P, Kats M A et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 334, 333-337(2011).

    [7] Kats M, Genevet P, Aoust G et al. Giant birefringence in optical antenna arrays with widely tailorable optical anisotropy[J]. Proceedings of the National Academy of Sciences, 109, 12364-12368(2012).

    [8] Liu L X, Zhang X Q, Kenney M et al. Broadband metasurfaces with simultaneous control of phase and amplitude[J]. Advanced Materials, 26, 5031-5036(2014).

    [9] Decker M, Staude I, Falkner M et al. High-efficiency dielectric Huygens’ surfaces[J]. Advanced Optical Materials, 3, 813-820(2015).

    [10] Shalaev M I, Sun J B, Tsukernik A et al. High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode[J]. Nano Letters, 15, 6261-6266(2015).

    [11] Zhang L, Ding J, Zheng H Y et al. Ultra-thin, high-efficiency mid-infrared transmissive Huygens meta-optics[J]. Nature Communications, 9, 1481(2018).

    [12] Arbabi A, Briggs R M, Horie Y et al. Efficient dielectric metasurface collimating lenses for mid-infrared quantum cascade lasers[J]. Optics Express, 23, 33310-33317(2015).

    [13] Li J, Wu T S, Xu W B et al. Mechanisms of 2π phase control in dielectric metasurface and transmission enhancement effect[J]. Optics Express, 27, 23186-23196(2019).

    [14] Anzan-Uz-Zaman M, Song K, Lee D G et al. A novel approach to Fabry-Pérot-resonance-based lens and demonstrating deep-subwavelength imaging[J]. Scientific Reports, 10, 10769(2020).

    [15] Khorasaninejad M, Capasso F. Broadband multifunctional efficient meta-gratings based on dielectric waveguide phase shifters[J]. Nano Letters, 15, 6709-6715(2015).

    [16] Fan Z B, Shao Z K, Xie M Y et al. Silicon nitride metalenses for close-to-one numerical aperture and wide-angle visible imaging[J]. Physical Review Applied, 10, 014005(2018).

    [17] Pancharatnam S. Generalized theory of interference and its applications[J]. Proceedings of the Indian Academy of Sciences-Section A, 44, 398-417(1956).

    [18] Berry M V. Quantal phase factors accompanying adiabatic changes[J]. Proceedings of the Royal Society of London A Mathematical and Physical Sciences, 392, 45-57(1984).

    [19] Zhao X G, Sun Z C, Zhang L Y et al. Review on metasurfaces: an alternative approach to advanced devices and instruments[J]. Advanced Devices & Instrumentation, 2022, 1-19(2022).

    [20] Engelberg J, Zhou C, Mazurski N et al. Near-IR wide field-of-view Huygens metalens for outdoor imaging applications[J]. Nanophotonics, 9, 361-370(2020).

    [21] Faraji-Dana M, Arbabi E, Arbabi A et al. Compact folded metasurface spectrometer[J]. Nature Communications, 9, 1-8(2018).

    [22] Ye X, Qian X, Chen Y X et al. Chip-scale metalens microscope for wide-field and depth-of-field imaging[J]. Advanced Photonics, 4, 046006(2022).

    [23] Maguid E, Yulevich I, Yannai M et al. Multifunctional interleaved geometric-phase dielectric metasurfaces[J]. Light: Science & Applications, 6, e17027(2017).

    [24] Neshev D, Aharonovich I. Optical metasurfaces: new generation building blocks for multi-functional optics[J]. Light: Science & Applications, 7, 1-5(2018).

    [25] Rubin N A, D’Aversa G, Chevalier P et al. Matrix Fourier optics enables a compact full-Stokes polarization camera[J]. Science, 365, eaax1839(2019).

    [26] Arbabi E, Kamali S M, Arbabi A et al. Full-stokes imaging polarimetry using dielectric metasurfaces[J]. ACS Photonics, 5, 3132-3140(2018).

    [27] Wu C, Li Q, Zhang Z H et al. Control of phase, polarization, and amplitude based on geometric phase in a racemic helix array[J]. Photonics Research, 9, 2265-2276(2021).

    [28] Tang J, Li Z, Wan S et al. Angular multiplexing nanoprinting with independent amplitude encryption based on visible-frequency metasurfaces[J]. ACS Applied Materials & Interfaces, 13, 38623-38628(2021).

    [29] Shen Y J, Wang X J, Xie Z W et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities[J]. Light: Science & Applications, 8, 1-29(2019).

    [30] Chen R, Zhou H, Moretti M et al. Orbital angular momentum waves: generation, detection, and emerging applications[J]. IEEE Communications Surveys & Tutorials, 22, 840-868(2020).

    [31] Zhou H Q, Sain B, Wang Y T et al. Polarization-encrypted orbital angular momentum multiplexed metasurface holography[J]. ACS Nano, 14, 5553-5559(2020).

    [32] Ma D N, Li Z, Cheng H et al. Multi-dimensional manipulation of optical field withmetasurfaces and its optimization based on machine learning[J]. Chinese Science Bulletin, 65, 1824-1844(2020).

    [33] Yang W H, Qu G Y, Lai F X et al. Dynamic bifunctional metasurfaces for holography and color display[J]. Advanced Materials, 33, 2101258(2021).

    [34] Schmidt S, Thiele S, Toulouse A et al. Tailored micro-optical freeform holograms for integrated complex beam shaping[J]. Optica, 7, 1279-1286(2020).

    [35] Bao Y J, Yan J H, Yang X G et al. Point-source geometric metasurface holography[J]. Nano Letters, 21, 2332-2338(2021).

    [36] Huang L L, Chen X Z, Mühlenbernd H et al. Three-dimensional optical holography using a plasmonic metasurface[J]. Nature Communications, 4, 1-8(2013).

    [37] Chen M K, Wu Y F, Feng L et al. Principles, functions, and applications of optical meta-lens[J]. Advanced Optical Materials, 9, 2001414(2021).

    [38] Pan M Y, Fu Y F, Zheng M J et al. Dielectric metalens for miniaturized imaging systems: progress and challenges[J]. Light: Science & Applications, 11, 1-32(2022).

    [39] Zheng G X, Mühlenbernd H, Kenney M et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 10, 308-312(2015).

    [40] Arbabi A, Horie Y, Bagheri M et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nature Nanotechnology, 10, 937-943(2015).

    [41] Devlin R C, Khorasaninejad M, Chen W T et al. Broadband high-efficiency dielectric metasurfaces for the visible spectrum[J]. Proceedings of the National Academy of Sciences of the United States of America, 113, 10473-10478(2016).

    [42] Ni Y B, Chen S, Wang Y J et al. Metasurface for structured light projection over 120° field of view[J]. Nano Letters, 20, 6719-6724(2020).

    [43] Li Z L, Dai Q, Mehmood M Q et al. Full-space cloud of random points with a scrambling metasurface[J]. Light: Science & Applications, 7, 1-8(2018).

    [44] Li N X, Fu Y H, Dong Y et al. Large-area pixelated metasurface beam deflector on a 12-inch glass wafer for random point generation[J]. Nanophotonics, 8, 1855-1861(2019).

    [45] Xie Y Y, Ni P N, Wang Q H et al. Metasurface-integrated vertical cavity surface-emitting lasers for programmable directional lasing emissions[J]. Nature Nanotechnology, 15, 125-130(2020).

    [46] Wang Q H, Ni P N, Xie Y Y et al. On-chip generation of structured light based on metasurface optoelectronic integration[J]. Laser & Photonics Reviews, 15, 2000385(2021).

    [47] Kim G, Kim Y, Yun J et al. Metasurface-driven full-space structured light for three-dimensional imaging[J]. Nature Communications, 13, 1-10(2022).

    [48] Kim I, Martins R J, Jang J et al. Nanophotonics for light detection and ranging technology[J]. Nature Nanotechnology, 16, 508-524(2021).

    [49] Kinsey N, DeVault C, Boltasseva A et al. Near-zero-index materials for photonics[J]. Nature Reviews Materials, 4, 742-760(2019).

    [50] Huang Y W, Lee H W H, Sokhoyan R et al. Gate-tunable conducting oxide metasurfaces[J]. Nano Letters, 16, 5319-5325(2016).

    [51] Park J, Kang J H, Kim S J et al. Dynamic reflection phase and polarization control in metasurfaces[J]. Nano Letters, 17, 407-413(2017).

    [52] Shirmanesh G K, Sokhoyan R, Pala R A et al. Dual-gated active metasurface at 1550 nm with wide (>300°) phase tunability[J]. Nano Letters, 18, 2957-2963(2018).

    [53] Kim S I, Park J, Jeong B G et al. Electrically reconfigurable active metasurface for 3D distance ranging[C](2021).

    [54] Park J, Jeong B G, Kim S I et al. All-solid-state spatial light modulator with independent phase and amplitude control for three-dimensional LiDAR applications[J]. Nature Nanotechnology, 16, 69-76(2021).

    [55] Lee J, Jung S, Chen P Y et al. Ultrafast electrically tunable polaritonic metasurfaces[J]. Advanced Optical Materials, 2, 1057-1063(2014).

    [56] Wu P C, Pala R A, Kafaie Shirmanesh G et al. Dynamic beam steering with all-dielectric electro-optic III-V multiple-quantum-well metasurfaces[J]. Nature Communications, 10, 1-9(2019).

    [57] Khaidarov E, Liu Z T, Paniagua-Domínguez R et al. Control of LED emission with functional dielectric metasurfaces[J]. Laser & Photonics Reviews, 14, 1900235(2020).

    [58] Holsteen A L, Cihan A F, Brongersma M L. Temporal color mixing and dynamic beam shaping with silicon metasurfaces[J]. Science, 365, 257-260(2019).

    [59] Chen R, Shao Y F, Zhou Y et al. A semisolid micromechanical beam steering system based on micrometa-lens arrays[J]. Nano Letters, 22, 1595-1603(2022).

    [60] Martins RJ, Marinov E, Youssef M AB et al. Metasurface-enhanced light detection and ranging technology[J]. Nature Communications, 13, 1-8(2022).

    [61] Li S Q, Xu X W, Veetil RM et al. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface[J]. Science, 364, 1087-1090(2019).

    [62] Yin X H, Steinle T, Huang L L et al. Beam switching and bifocal zoom lensing using active plasmonic metasurfaces[J]. Light: Science & Applications, 6, e17016(2017).

    [63] Ihrke I, Restrepo J, Mignard-Debise L. Principles of Light Field Imaging: briefly revisiting 25 years of research[J]. IEEE Signal Processing Magazine, 33, 59-69(2016).

    [64] Favaro P. A split-sensor light field camera for extended depth of field and superresolution[J]. Proceedings of SPIE, 8436, 843602(2012).

    [65] Zhou C Y, Nayar S. What are good apertures for defocus deblurring?[C](2010).

    [66] Holsteen A L, Lin D M, Kauvar I et al. A light-field metasurface for high-resolution single-particle tracking[J]. Nano Letters, 19, 2267-2271(2019).

    [67] Lin R J, Su V C, Wang S M et al. Achromatic metalens array for full-colour light-field imaging[J]. Nature Nanotechnology, 14, 227-231(2019).

    [68] Kwon H, Arbabi E, Kamali S M et al. Single-shot quantitative phase gradient microscopy using a system of multifunctional metasurfaces[J]. Nature Photonics, 14, 109-114(2020).

    [69] Liu W W, Ma D N, Li Z C et al. Aberration-corrected three-dimensional positioning with a single-shot metalens array[J]. Optica, 7, 1706-1713(2020).

    [70] Fan Q B, Xu W Z, Hu X M et al. Trilobite-inspired neural nanophotonic light-field camera with extreme depth-of-field[J]. Nature Communications, 13, 1-10(2022).

    [71] Chen M K, Liu X Y, Wu Y F et al. A meta-device for intelligent depth perception[J]. Advanced Materials, 2107465(2022).

    [72] Guo Q, Shi Z J, Huang Y W et al. Compact single-shot metalens depth sensors inspired by eyes of jumping spiders[J]. Proceedings of the National Academy of Sciences of the United States of America, 116, 22959-22965(2019).

    [73] Tan S, Yang F, Boominathan V et al. 3D imaging using extreme dispersion in optical metasurfaces[J]. ACS Photonics, 8, 1421-1429(2021).

    [74] Jin C Q, Zhang J H, Guo C L. Metasurface integrated with double-helix point spread function and metalens for three-dimensional imaging[J]. Nanophotonics, 8, 451-458(2019).

    [75] Jin C Q, Afsharnia M, Berlich R et al. Dielectric metasurfaces for distance measurements and three-dimensional imaging[J]. Advanced Photonics, 1, 036001(2019).

    [76] Colburn S, Majumdar A. Metasurface generation of paired accelerating and rotating optical beams for passive ranging and scene reconstruction[J]. ACS Photonics, 7, 1529-1536(2020).

    [77] Hua X, Wang Y J, Wang S M et al. Ultra-compact snapshot spectral light-field imaging[J]. Nature Communications, 13, 1-9(2022).

    [78] Ren H R, Fang X Y, Jang J et al. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space[J]. Nature Nanotechnology, 15, 948-955(2020).

    [79] Ren H R, Briere G, Fang X Y et al. Metasurface orbital angular momentum holography[J]. Nature Communications, 10, 1-8(2019).

    [80] Colburn S, Zhan A L, Bayati E et al. Broadband transparent and CMOS-compatible flat optics with silicon nitride metasurfaces[J]. Optical Materials Express, 8, 2330-2344(2018).

    [81] Schaeper O, Yang Z W, Kianinia M et al. Monolithic silicon carbide metalenses[J]. ACS Photonics, 9, 1409-1414(2022).

    [82] Engelberg J, Levy U. The advantages of metalenses over diffractive lenses[J]. Nature Communications, 11, 1-4(2020).

    [83] Mait J N, Athale R A, van der Gracht J et al. Potential applications of metamaterials to computational imaging[C], FTu8B.1(2020).

    [84] Chen M K, Chu C H, Liu X Y et al. Meta-lens in the sky[J]. IEEE Access, 10, 46552-46557(2022).

    Tools

    Get Citation

    Copy Citation Text

    Xiaoli Jing, Yongtian Wang, Lingling Huang. Metasurface-Based Three-Dimensional Imaging Technique[J]. Laser & Optoelectronics Progress, 2023, 60(8): 0811003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Imaging Systems

    Received: Dec. 31, 2022

    Accepted: Mar. 13, 2023

    Published Online: Apr. 17, 2023

    The Author Email: Huang Lingling (huanglingling@bit.edu.cn)

    DOI:10.3788/LOP223453

    Topics