Acta Photonica Sinica, Volume. 53, Issue 7, 0753307(2024)
Research Progress on Fabrication of Two-dimensional Hexagonal Boron Nitride and Its Optoelectronic Devices (Invited)
[1] MANZELI S, OVCHINNIKOV D, PASQUIER D et al. 2D transition metal dichalcogenides[J]. Nature Reviews Materials, 2, 1-15(2017).
[2] LONG M, WANG P, FANG H et al. Progress, challenges, and opportunities for 2D material based photodetectors[J]. Advanced Functional Materials, 29, 1803807(2019).
[3] LIN Z, MCCREARY A, BRIGGS N et al. 2D materials advances: from large scale synthesis and controlled heterostructures to improved characterization techniques, defects and applications[J]. 2D Materials, 3, 042001(2016).
[4] NAGASHIMA A, TEJIMA N, GAMOU Y et al. Electronic structure of monolayer hexagonal boron nitride physisorbed on metal surfaces[J]. Physical Review Letters, 75, 3918(1995).
[5] ROY S, ZHANG X, PUTHIRATH A B et al. Structure, properties and applications of two‐dimensional hexagonal boron nitride[J]. Advanced Materials, 33, 2101589(2021).
[6] ZHANG K, FENG Y, WANG F et al. Two dimensional hexagonal boron nitride (2D-hBN): synthesis, properties and applications[J]. Journal of Materials Chemistry C, 5, 11992-12022(2017).
[7] WATANABE K, TANIGUCHI T. Hexagonal boron nitride as a new ultraviolet luminescent material and its application[J]. International Journal of Applied Ceramic Technology, 8, 977-989(2011).
[8] ZHANG C, SHI Z, WU T et al. Microstructure engineering of hexagonal boron nitride for single‐photon emitter applications[J]. Advanced Optical Materials, 10, 2200207(2022).
[9] KAUSHIK S, KARMAKAR S, VARSHNEY R K et al. Deep-ultraviolet photodetectors based on hexagonal boron nitride nanosheets enhanced by localized surface plasmon resonance in Al nanoparticles[J]. ACS Applied Nano Materials, 5, 7481-7491(2022).
[10] CALDWELL J D, AHARONOVICH I, CASSABOIS G et al. Photonics with hexagonal boron nitride[J]. Nature Reviews Materials, 4, 552-567(2019).
[11] BHIMANAPATI G R, KOZUCH D, ROBINSON J A. Large-scale synthesis and functionalization of hexagonal boron nitride nanosheets[J]. Nanoscale, 6, 11671-11675(2014).
[12] ISMACH A, CHOU H, FERRER D A et al. Toward the controlled synthesis of hexagonal boron nitride films[J]. ACS Nano, 6, 6378-6385(2012).
[13] KIM S M, HSU A, PARK M H et al. Synthesis of large-area multilayer hexagonal boron nitride for high material performance[J]. Nature Communications, 6, 8662(2015).
[14] OGAWA S, FUKUSHIMA S, SHIMATANI M. Hexagonal boron nitride for photonic device applications: a review[J]. Materials, 16, 2005(2023).
[15] YADAV C P, PANDEY D K. Pressure dependent ultrasonic characterization of nano-structured w-BN[J]. Ultrasonics, 96, 181-184(2019).
[16] MENG Yue, MAO H K, ENG P J et al. The formation of sp3 bonding in compressed BN[J]. Nature Materials, 3, 111-114(2004).
[17] CHUBAROV M, HÖGBERG H, HENRY A et al. Review Article: Challenge in determining the crystal structure of epitaxial 0001 oriented sp2-BN films[J]. Journal of Vacuum Science & Technology A, 36, 030801(2018).
[18] NACLERIO A E, KIDAMBI P R. A review of scalable hexagonal boron nitride (h‐BN) synthesis for present and future applications[J]. Advanced Materials, 35, 2207374(2023).
[19] YAMANAKA A, OKADA S. Energetics and electronic structure of h-BN nanoflakes[J]. Scientific Reports, 6, 30653(2016).
[20] MOLAEI M J, YOUNAS M, REZAKAZEMI M. A comprehensive review on recent advances in two-dimensional (2D) hexagonal boron nitride[J]. ACS Applied Electronic Materials, 3, 5165-5187(2021).
[21] KHAN M H, LIU H K, SUN X et al. Few-atomic-layered hexagonal boron nitride: CVD growth, characterization, and applications[J]. Materials Today, 20, 611-628(2017).
[22] JIANG X F, WENG Q, WANG X B et al. Recent progress on fabrications and applications of boron nitride nanomaterials: a review[J]. Journal of Materials Science & Technology, 31, 589-598(2015).
[23] WANG J, MA F, LIANG W et al. Electrical properties and applications of graphene, hexagonal boron nitride (h-BN), and graphene/h-BN heterostructures[J]. Materials Today Physics, 2, 6-34(2017).
[24] KIM K K, HSU A, JIA X et al. Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition[J]. Nano Letters, 12, 161-166(2012).
[25] NOVOSELOV K S, GEIM A K, MOROZOV S V et al. Electric field effect in atomically thin carbon films[J]. Science, 306, 666-669(2004).
[26] YI M, SHEN Z. A review on mechanical exfoliation for the scalable production of graphene[J]. Journal of Materials Chemistry A, 3, 11700-11715(2015).
[27] GAO E, LIN S Z, QIN Z et al. Mechanical exfoliation of two-dimensional materials[J]. Journal of the Mechanics and Physics of Solids, 115, 248-262(2018).
[28] PACILÉ D, MEYER J C, GIRIT Ç Ö et al. The two-dimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes[J]. Applied Physics Letters, 92, 133107(2008).
[29] HAN W Q, WU L, ZHU Y et al. Structure of chemically derived mono- and few-atomic-layer boron nitride sheets[J]. Applied Physics Letters, 93, 223103(2008).
[30] LIN Y, WILLIAMS T V, CONNELL J W. Soluble, exfoliated hexagonal boron nitride nanosheets[J]. The Journal of Physical Chemistry Letters, 1, 277-283(2010).
[31] LIN Y, WILLIAMS T V, XU T B et al. Aqueous dispersions of few-layered and monolayered hexagonal boron nitride nanosheets from sonication-assisted hydrolysis: critical role of water[J]. The Journal of Physical Chemistry C, 115, 2679-2685(2011).
[32] AMBROSI A, PUMERA M. Electrochemically exfoliated graphene and graphene oxide for energy storage and electrochemistry applications[J]. Chemistry-A European Journal, 22, 153-159(2016).
[33] MAYORGA‐MARTINEZ C C, KHEZRI B, ENG A Y S et al. Bipolar electrochemical synthesis of WS2 nanoparticles and their application in magneto‐immunosandwich assay[J]. Advanced Functional Materials, 26, 4094-4098(2016).
[34] WANG Y, MAYORGA-MARTINEZ C C, CHIA X et al. Nonconductive layered hexagonal boron nitride exfoliation by bipolar electrochemistry[J]. Nanoscale, 10, 7298-7303(2018).
[35] SONG X, GAO J, NIE Y et al. Chemical vapor deposition growth of large-scale hexagonal boron nitride with controllable orientation[J]. Nano Research, 8, 3164-3176(2015).
[36] SONG L, CI L, LU H et al. Large scale growth and characterization of atomic hexagonal boron nitride layers[J]. Nano Letters, 10, 3209-3215(2010).
[37] GAO Y, REN W, MA T et al. Repeated and controlled growth of monolayer, bilayer and few-layer hexagonal boron nitride on Pt foils[J]. ACS Nano, 7, 5199-5206(2013).
[38] LEE J S, CHOI S H, YUN S J et al. Wafer-scale single-crystal hexagonal boron nitride film via self-collimated grain formation[J]. Science, 362, 817-821(2018).
[39] LU G, WU T, YUAN Q et al. Synthesis of large single-crystal hexagonal boron nitride grains on Cu-Ni alloy[J]. Nature Communications, 6, 6160(2015).
[40] TAY R Y, GRIEP M H, MALLICK G et al. Growth of large single-crystalline two-dimensional boron nitride hexagons on electropolished copper[J]. Nano Letters, 14, 839-846(2014).
[41] JI Y, CALDERON B, HAN Y et al. Chemical vapor deposition growth of large single-crystal mono-, bi-, tri-layer hexagonal boron nitride and their interlayer stacking[J]. ACS Nano, 11, 12057-12066(2017).
[42] WANG L, XU X, ZHANG L et al. Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper[J]. Nature, 570, 91-95(2019).
[43] CHEN T A, C-PCHUU, C-CTSENG et al. Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu (111)[J]. Nature, 579, 219-223(2020).
[44] SAJJAD M, MORELL G, FENG P. Advance in novel boron nitride nanosheets to nanoelectronic device applications[J]. ACS Applied Materials & Interfaces, 5, 5051-5056(2013).
[45] SAJJAD M, PENG X, CHU J et al. Design and installation of a CO2-pulsed laser plasma deposition system for the growth of mass product nanostructures[J]. Journal of Materials Research, 28, 1747-1752(2013).
[46] SAJJAD M, AHMADI M, GUINEL M J et al. Large scale synthesis of single-crystal and polycrystalline boron nitride nanosheets[J]. Journal of Materials Science, 48, 2543-2549(2013).
[47] SAJJAD M, JADWISIENCZAK W M, FENG P. Nanoscale structure study of boron nitride nanosheets and development of a deep-UV photo-detector[J]. Nanoscale, 6, 4577-4582(2014).
[48] SAJJAD M, MAKAROV V, MENDOZA F et al. Synthesis, characterization and fabrication of graphene/boron nitride nanosheets heterostructure tunneling devices[J]. Nanomaterials, 9, 925(2019).
[49] VELÁZQUEZ D, SEIBERT R, MAN H et al. Pulsed laser deposition of single layer, hexagonal boron nitride (white graphene, h-BN) on fiber-oriented Ag (111)/SrTiO3 (001)[J]. Journal of Applied Physics, 119, 095306(2016).
[50] BISWAS A, RUAN Q, LEE F et al. Unidirectional domain growth of hexagonal boron nitride thin films[J]. Applied Materials Today, 30, 101734(2023).
[51] WANG H, ZHANG X, LIU H et al. Synthesis of large‐sized single‐crystal hexagonal boron nitride domains on nickel foils by ion beam sputtering deposition[J]. Advanced Materials, 27, 8109-8115(2015).
[52] OHTA J, FUJIOKA H. Sputter synthesis of wafer-scale hexagonal boron nitride films via interface segregation[J]. APL Materials, 5, 076107(2017).
[53] NAKHAIE S, WOFFORD J, SCHUMANN T et al. Synthesis of atomically thin hexagonal boron nitride films on nickel foils by molecular beam epitaxy[J]. Applied Physics Letters, 106, 213108(2015).
[54] LIU F, RONG X, YU Y et al. Thermally annealed wafer-scale h-BN films grown on sapphire substrate by molecular beam epitaxy[J]. Applied Physics Letters, 116, 142104(2020).
[55] JARVINEN P, HAMALAINEN S K, BANERJEE K et al. Molecular self-assembly on graphene on SiO2 and h-BN substrates[J]. Nano Letters, 13, 3199-204(2013).
[56] HE L, YE Z, ZENG J et al. Enhancement in electrical and thermal properties of LDPE with Al2O3 and h-BN as nanofiller[J]. Materials, 15, 2844(2022).
[57] ZOU X, HUANG C W, WANG L et al. Dielectric engineering of a boron nitride/hafnium oxide heterostructure for high‐performance 2D field effect transistors[J]. Advanced Materials, 28, 2062-2069(2016).
[58] ZHANG D, WU F, YING Q et al. Thickness-tunable growth of ultra-large, continuous and high-dielectric h-BN thin films[J]. Journal of Materials Chemistry C, 7, 1871-1879(2019).
[59] DEAN C R, YOUNG A F, MERIC I et al. Boron nitride substrates for high-quality graphene electronics[J]. Nature Nanotechnology, 5, 722-726(2010).
[60] MOROZOV S, NOVOSELOV K, KATSNELSON M et al. Giant intrinsic carrier mobilities in graphene and its bilayer[J]. Physical Review Letters, 100, 016602(2008).
[61] GANNETT W, REGAN W, WATANABE K et al. Boron nitride substrates for high mobility chemical vapor deposited graphene[J]. Applied Physics Letters, 98, 242105(2011).
[62] LEE C, RATHI S, KHAN M A et al. Comparison of trapped charges and hysteresis behavior in hBN encapsulated single MoS2 flake based field effect transistors on SiO2 and hBN substrates[J]. Nanotechnology, 29, 335202(2018).
[63] DASIKA P, SAMANTARAY D, MURALI K et al. Contact‐barrier free, high mobility, dual‐gated junctionless transistor using tellurium nanowire[J]. Advanced Functional Materials, 31, 2006278(2021).
[64] KOENIG S P, DOGANOV R A, SCHMIDT H et al. Electric field effect in ultrathin black phosphorus[J]. Applied Physics Letters, 104, 103106(2014).
[65] CASTELLANOS-GOMEZ A, VICARELLI L, PRADA E et al. Isolation and characterization of few-layer black phosphorus[J]. 2D Materials, 1, 025001(2014).
[66] BANDURIN D A, TYURNINA A V, YU G L et al. High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe[J]. Nature Nanotechnology, 12, 223-227(2017).
[67] MIRABELLI G, MCGEOUGH C, SCHMIDT M et al. Air sensitivity of MoS2, MoSe2, MoTe2, HfS2, and HfSe2[J]. Journal of Applied Physics, 120, 125102(2016).
[68] GUO Q, POSPISCHIL A, BHUIYAN M et al. Black phosphorus mid-infrared photodetectors with high gain[J]. Nano Letters, 16, 4648-4655(2016).
[69] DOGANOV R A, O’FARRELL E C, KOENIG S P et al. Transport properties of pristine few-layer black phosphorus by van der Waals passivation in an inert atmosphere[J]. Nature Communications, 6, 6647(2015).
[70] ZHANG S, HAN L, XIAO K et al. H‐BN‐encapsulated uncooled infrared photodetectors based on tantalum nickel selenide[J]. Advanced Functional Materials, 33, 2305380(2023).
[71] WANG J, YAO Q, HUANG C W et al. High mobility MoS2 transistor with low Schottky barrier contact by using atomic thick h‐BN as a tunneling layer[J]. Advanced Materials, 28, 8302-8308(2016).
[72] PIQUEMAL-BANCI M L, GALCERAN R, GODEL F et al. Insulator-to-metallic spin-filtering in 2D-magnetic tunnel junctions based on hexagonal boron nitride[J]. ACS Nano, 12, 4712-4718(2018).
[73] DANKERT A, VENKATA KAMALAKAR M, WAJID A et al. Tunnel magnetoresistance with atomically thin two-dimensional hexagonal boron nitride barriers[J]. Nano Research, 8, 1357-1364(2015).
[74] TONG L, PENG M, WU P et al. Hole-dominated Fowler-Nordheim tunneling in 2D heterojunctions for infrared imaging[J]. Science Bulletin, 66, 139-146(2021).
[75] LEE G H, YU Y J, LEE C et al. Electron tunneling through atomically flat and ultrathin hexagonal boron nitride[J]. Applied Physics Letters, 99, 243114(2011).
[76] CHENG R, WANG F, YIN L et al. Multifunctional tunneling devices based on graphene/h-BN/MoSe2 van der Waals heterostructures[J]. Applied Physics Letters, 110, 173507(2017).
[77] AFZAL A M, JAVED Y, SHAD N A et al. Tunneling-based rectification and photoresponsivity in black phosphorus/hexagonal boron nitride/rhenium diselenide van der Waals heterojunction diode[J]. Nanoscale, 12, 3455-3468(2020).
[78] GAO F, CHEN H, FENG W et al. High-performance van der Waals metal‐insulator‐semiconductor photodetector optimized with valence band matching[J]. Advanced Functional Materials, 31, 2104359(2021).
[79] PHAN N A N, NOH H, KIM J et al. Enhanced performance of WS2 field‐effect transistor through mono and bilayer h‐BN tunneling contacts[J]. Small, 18, 2105753(2022).
[80] WU L, WANG A, SHI J et al. Atomically sharp interface enabled ultrahigh-speed non-volatile memory devices[J]. Nature Nanotechnology, 16, 882-887(2021).
[81] CHENG R, WANG F, YIN L et al. High-performance, multifunctional devices based on asymmetric van der Waals heterostructures[J]. Nature Electronics, 1, 356-361(2018).
[82] CHEN X, REN F, GU S et al. Review of gallium-oxide-based solar-blind ultraviolet photodetectors[J]. Photonics Research, 7, 381-415(2019).
[83] CAI Q, YOU H, GUO H et al. Progress on AlGaN-based solar-blind ultraviolet photodetectors and focal plane arrays[J]. Light: Science & Applications, 10, 94(2021).
[84] XIE C, LU X T, TONG X W et al. Recent progress in solar‐blind deep‐ultraviolet photodetectors based on inorganic ultrawide bandgap semiconductors[J]. Advanced Functional Materials, 29, 1806006(2019).
[85] TAN B, YANG H, HU Y et al. Synthesis of high-quality multilayer hexagonal boron nitride films on Au foils for ultrahigh rejection ratio solar-blind photodetection[J]. ACS Applied Materials & Interfaces, 12, 28351-28359(2020).
[86] ZHENG W, LIN R, ZHANG Z et al. Vacuum-ultraviolet photodetection in few-layered h-BN[J]. ACS Applied Materials & Interfaces, 10, 27116-27123(2018).
[87] WANG Y, MENG J, TIAN Y et al. Deep ultraviolet photodetectors based on carbon-doped two-dimensional hexagonal boron nitride[J]. ACS Applied Materials & Interfaces, 12, 27361-27367(2020).
[88] ZUNGER A, KATZIR A, HALPERIN A. Optical properties of hexagonal boron nitride[J]. Physical Review B, 13, 5560(1976).
[89] LIU H, MENG J, ZHANG X et al. High-performance deep ultraviolet photodetectors based on few-layer hexagonal boron nitride[J]. Nanoscale, 10, 5559-5565(2018).
[90] ZHU X, CHEN L, TANG X et al. Plasmonic enhancement in deep ultraviolet photoresponse of hexagonal boron nitride thin films[J]. Applied Physics Letters, 120, 091109(2022).
[91] VEERALINGAM S, DURAI L, YADAV P et al. Record-high responsivity and detectivity of a flexible deep-ultraviolet photodetector based on solid state-assisted synthesized hBN nanosheets[J]. ACS Applied Electronic Materials, 3, 1162-1169(2021).
[92] DAI S, FEI Z, MA Q et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride[J]. Science, 343, 1125-1129(2014).
[93] SAJID A, FORD M J, REIMERS J R. Single-photon emitters in hexagonal boron nitride: a review of progress[J]. Reports on Progress in Physics, 83, 044501(2020).
[94] LI P, DOLADO I, ALFARO-MOZAZ F J et al. Infrared hyperbolic metasurface based on nanostructured van der Waals materials[J]. Science, 359, 892-896(2018).
[95] ZHAO B, ZHANG Z M. Perfect mid-infrared absorption by hybrid phonon-plasmon polaritons in hBN/metal-grating anisotropic structures[J]. International Journal of Heat and Mass Transfer, 106, 1025-1034(2017).
[96] CASTILLA S, VANGELIDIS I, V-VPUSAPATI et al. Plasmonic antenna coupling to hyperbolic phonon-polaritons for sensitive and fast mid-infrared photodetection with graphene[J]. Nature Communications, 11, 4872(2020).
[97] WOESSNER A, PARRET R, DAVYDOVSKAYA D et al. Electrical detection of hyperbolic phonon-polaritons in heterostructures of graphene and boron nitride[J]. NPJ 2D Materials and Applications, 1, 25(2017).
[98] XU Zheyuan, JIANG Ying, PAN Anlian. Research progress on exciton-polaritons in two-dimensional transition metal chalcogenides (invited)[J]. Acta Photonica Sinica, 51, 0551307(2022).
[99] CHEN Nan, WANG Yue, LIU Tao et al. Development and application test of scattering-type scanning near-field optical microscope[J]. Acta Photonica Sinica, 50, 1111001(2021).
[100] ZHANG C, ZHAO S, JIN C et al. Direct growth of large-area graphene and boron nitride heterostructures by a co-segregation method[J]. Nature Communications, 6, 6519(2015).
[101] FU L, SUN Y, WU N et al. Direct growth of MoS2/h-BN heterostructures via a sulfide-resistant alloy[J]. Acs Nano, 10, 2063-2070(2016).
[102] ALAHMADI M, MAHVASH F, SZKOPEK T et al. A two-step chemical vapor deposition process for the growth of continuous vertical heterostructure WSe2/h-BN and its optical properties[J]. RSC Advances, 11, 16962-16969(2021).
Get Citation
Copy Citation Text
Man LUO, Yang ZHOU, Tiantian CHENG, Yuxin MENG, Yijin WANG, Jiachi XIAN, Jiayi QIN, Chenhui YU. Research Progress on Fabrication of Two-dimensional Hexagonal Boron Nitride and Its Optoelectronic Devices (Invited)[J]. Acta Photonica Sinica, 2024, 53(7): 0753307
Category: Special Issue for Photodetectors
Received: Apr. 1, 2024
Accepted: May. 31, 2024
Published Online: Aug. 12, 2024
The Author Email: Chenhui YU (ychyu@ntu.edu.cn)