Infrared and Laser Engineering, Volume. 49, Issue 10, 20200333(2020)

Application of adaptive optics coherence tomography in retinal high resolution imaging

Wenqiang Fan... Zhichen Wang, Baogang Chen, Tao Chen and Qichang An* |Show fewer author(s)
Author Affiliations
  • Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
  • show less
    References(85)

    [1] Jiaqiang Yang, Dewen Cheng, Qingfeng Wang, . Design of a novel wide view-field angle and anti-stray-light fundus camera. Acta Optica Sinica, 32, 1122002(2012).

    [2] Can Li, Shumei Song, Ying Liu, . Design of optical system for catadioptric fundus camera. Optics and Precision Engineering, 20, 1710-1717(2012).

    [3] Lili Liu, Tao Huang, Min Cai, . Retinal imaging system with large field of view based on liquid crystal adaptive optics. Optics & Precision Engineering, 21, 301-307(2013).

    [4] R H Webb, G W Hughes. Scanning laser ophthalmoscope. IEEE Transactions on Biomedical Engineering, BME-28, 488-492(1981).

    [5] R H Webb, G W Hughes, F C Delori. Confocal scanning laser ophthalmoscope. Applied Optics, 26, 1492-1499(1987).

    [6] E A Swanson, J A Izatt, M R Hee, et al. In vivo retinal imaging by optical coherence tomography. Optics Letters, 18, 1864-1866(1993).

    [7] K Shiroki. Fluorescein fundus angiography. Ophthalmology, 46, 1355-1364(2004).

    [8] M Wojtkowski, B Kaluzny, R J Zawadzki, et al. New directions in ophthalmic optical coherence tomography. Optom Vis Sci, 89, 524-542(2012).

    [9] D T Miller, K Kurokawa. Cellular scale imaging of transparent retinal structures and processes using adaptive optics optical coherence tomography. Annual Review of Vision Science, 6, 19.1-19.34(2020).

    [10] D Huang, E A Swanson, C P Lin, et al. Optical coherence tomography. Science, 254, 1178-1181(1991).

    [11] Keran Deng, Kai Wei, Kai Jin, . Research on high-contrast imaging performance of 1.8 m telescope sodium beacon adaptive optical system. Infrared and Laser Engineering, 49, 20200058(2020).

    [12] Jieling He, Ling Wei, Jinsheng Yang, . Phase fitting optimization method to laser beam shaping system based on deformable mirror. Laser & Optoelectronics Progress, 53, 020101(2016).

    [13] R D Simmonds, P S Salter, A Jesacher, et al. Three dimensional laser microfabrication in diamond using a dual adaptive optics system. Optics Express, 19, 24122-24128(2011).

    [15] Limin Jin, Hongxin Luo, Jie Wang, . Application of bimorph mirror in the optical system of synchrotron radiation light source. Chinese Optics, 10, 699-707(2017).

    [16] J Liang, D R Williams, D T Miller. Supernormal vision and high-resolution retinal imaging through adaptive optics. Journal of the Optical Society of America A Optics Image Science& Vision, 14, 2884-2892(1997).

    [17] Lixin Liu, Meiling Zhang, Zhaoqing Wu, . Application of adaptive optics in fluorescence microscope. Laser & Optoelectronics Progress, 57, 120001(2020).

    [18] A Chernyshov, U Sterr, F Riehle, et al. Calibration of a Shack-Hartmann sensor for absolute measurements of wavefronts. Appl Opt, 44, 6419-6425(2005).

    [19] S R Chamot, C Dainty, Simone Esposito. Adaptive optics for ophthalmic applications using a pyramid wavefront sensor. Opt Express, 14, 518-526(2006).

    [20] [20] Rueckel M, Denk W. Coherencegated wavefront sensing using a virtual Shack–Hartmann sens[C] SPIE, 2006, 6306: 63060H.

    [21] S Tuohy, A Gh Podoleanu. Depth-resolved wavefront aberrations using a coherence-gated Shack-Hartmann wavefront sensor. Opt Express, 18, 3458-3476(2010).

    [22] Markus Rueckel, Winfried Denk. Properties of coherence-gated wavefront sensing. J Opt Soc Am A Opt Image Vis, 24, 3517-3529(2007).

    [23] [23] Wang Jingyu, Podoleanu A Gh. Timedomain coherencegated ShackHartmann wavefront sens[C] SPIE, 2011, 8091: 80911L.

    [24] [24] Wang J, Podoleanu A G. Sweptsource coherencegated ShackHartmann wavefront sens[C] SPIE, 2012, 8213: 42.

    [25] [25] Wang J, Podoleanu A G. Demonstration of depthresolved wavefront sensing using a sweptsource coherencegated ShackHartmann wavefront sens[C] SPIE Bios International Society f Optics Photonics, 2015.

    [26] B Hermann, EJ Fernández, A Unterhuber, et al. Adaptive-optics ultrahigh-resolution optical coherence tomography. Optics Letters, 29, 2142-2144(2004).

    [27] Y Zhang, J Rha, R Jonnal, et al. Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina. Opt Express, 13, 4792-4811(2005).

    [28] R J Zawadzki, S M Jones, S S Olivier, et al. Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging. Opt Express, 13, 8532-8546(2005).

    [29] D Merino, C Dainty, A Bradu, et al. Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy. Opt Express, 14, 3345-3353(2006).

    [30] C E Bigelow, N V Iftimia, R D Ferguson, et al. Compact multimodal adaptive-optics spectral-domain optical coherence tomography instrument for retinal imaging. Journal of the Optical Society of America A Optics Image Science & Vision, 24, 1327-1336(2007).

    [31] G H Shi, Z H Ding, Y Dai, et al. Adaptive optics optical coherence tomography based on a 61-element deformable mirror. Journal of Physics Conference Series, 48, 506-510(2006).

    [32] E J Fernández, B Povazay, B Hermann, et al. Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator. Vision Res, 45, 3432-3444(2005).

    [33] Y Jian, R J Zawadzki, M V Sarunic. Adaptive optics optical coherence tomography for in vivo mouse retinal imaging. Biomed Opt, 18, 056007(2013).

    [34] Y Jian, J Xu, M A Gradowski, et al. Wavefront sensorless adaptive optics optical coherence tomography for in vivo retinal imaging in mice. Biomed Opt Express, 5, 547-559(2014).

    [35] R J Zawadzki, S S Choi, S M Jones, et al. Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions. Journal of the Optical Society of America A Optics Image Science & Vision, 24, 1373(2007).

    [36] D X Hammer, R D Ferguson, M Mujat. Multimodal adaptive optics retinal imager: design and performance. J Opt Soc Am, A, 29, 2598-2607(2012).

    [37] R S Jonnal, J Qu, K Thorn, et al. En-face coherence gating of the retina with adaptive optics. Investigative Ophthalmology & Visualence, 44, U275-U275(2003).

    [38] M Pircher, R J Zawadzki, J W Evans, et al. Simultaneous imaging of human cone mosaic with adaptive optics enhanced scanning laser ophthalmoscopy and high-speed transversal scanning optical coherence tomography. Optics Letters, 33, 22-24(2008).

    [39] L Ginner, A Kumar, D Fechtig, et al. Noniterative digital aberration correction for cellular resolution retinal optical coherence tomography in vivo. Optica, 4, 924-31(2017).

    [40] S R Chinn, E A Swanson, J G Fujimoto. Optical coherence tomography using a frequency-tunable optical source. Optics Letters, 22, 340-342(1997).

    [41] A Unterhuber, B Povazay, B Hermann, et al. In vivo retinal optical coherence tomography at 1040 nm-enhanced penetration into the choroid. Optics Express, 13, 3252-8(2005).

    [42] S Bourquin, A D Aguirre, I Hartl, et al. Ultrahigh resolution real time OCT imaging using a compact femtosecond Nd: Glass laser and nonlinear fiber. Opt Express, 11, 3290-3297(2003).

    [43] H Lim, Y Jiang, Y Wang, et al. Ultrahigh-resolution optical coherence tomography with a fiber laser source at 1 μm. Optics Letters, 30, 1171-1180(2005).

    [44] S H Yun, G J Tearney, J F de Boer, et al. High-speed optical frequency-domain imaging. Opt Express, 11, 2953-2963(2003).

    [45] [45] Yun S H, Tearney G J, Boer J F de, et al. Catheterbased optical frequency domain imaging at 36 frames per second[C] Coherence Domain Optical Methods Optical Coherence Tomography in Biomedicine IX, 2005: 56905916.

    [46] M Kowalczyk, T Martynkien, P Mergo, et al. Ultrabroadband wavelength-swept source based on total mode-locking of an Yb: CaF2 laser. Photonics Research, 7, 182-186(2019).

    [47] E C Lee, J F D Boer, M Mujat, et al. In vivo optical frequency domain imaging of human retina and choroid. Optics Express, 14, 4403-4411(2006).

    [48] K Kurokawa, K Sasaki, S Makita, et al. Simultaneous high-resolution retinal imaging and high-penetration choroidal imaging by one-micrometer adaptive optics optical coherence tomography. Opt Express, 18, 8515-8527(2010).

    [49] M Mujat, R D Ferguson, A H Patel, et al. High resolution multimodal clinical ophthalmic imaging system. Opt Express, 18, 11607-11621(2010).

    [50] I Grulkowski, J J Liu, B Potsaid, et al. Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with verticalcavity surface emitting lasers. Biomed Opt Express, 3, 2733-2751(2012).

    [51] T Klein, W Wieser, L Reznicek, et al. Multi-MHz retinal OCT. Biomed Opt Express, 4, 1890-1908(2013).

    [52] Y Jian, S Lee, M J Ju, et al. Lens-based wavefront sensorless adaptive optics swept source OCT. Entific Reports, 6, 27620(2016).

    [53] M Azimipour, J V Migacz, R J Zawadzki, et al. Functional retinal imaging using adaptive optics swept-source OCT at 1.6 MHz. Optica, 6, 300-303(2019).

    [54] M Azimipour, R S Jonnal, J S Werner, et al. Coextensive synchronized SLO-OCT with adaptive optics for human retinal imaging. Opt Lett, 44, 4219-4222(2019).

    [56] Junle Qu, R S Jonnal, K E Thorn, . Single cell imaging of the living human retina using adaptive optics and optical coherence tomography. Acta Biophysica Sinica, 20, 104-108(2004).

    [57] Yudong Zhang, Wenhan Jiang, Guohua Shi, . Application of adaptive optics in ophthalmology. Science in China, 37, 68-74(2007).

    [60] R X Liu, X L Zheng, D Y Li, et al. Retinal axial focusing and multi-layer imaging with a liquid crystal adaptive optics camera. Chin Phys B, 23, 094211(2014).

    [61] Xianliang Zneng, Ruixue Liu, Mingliang Xia, . Retinal correction imaging system based on liquid crystal adaptive optics. Chinese Optics, 7, 98-104(2014).

    [63] E Fernández, A Unterhuber, P Prieto, et al. Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser. Opt Express, 13, 400-409(2005).

    [64] R E Bedford, G Wyszecki. Axial chromatic aberration of the human eye. J Opt Soc Am, 47, 564-565(1957).

    [65] W M Harmening, P Tiruveedhula, A Roorda, et al. Measurement and correction of transverse chromatic offsets for multi-wavelength retinal microscopy in the living eye. Biomed Opt Express, 3, 2066-2077(2012).

    [66] E J Fernández, B Hermann, B Povazay, et al. Ultrahigh resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina. Opt Express, 16, 11083-11094(2008).

    [67] R J Zawadzki, B Cense, Y Zhang, et al. Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction. Opt Express, 16, 8126-8143(2008).

    [68] R J Zawadzki, S M Jones, S Pilli, et al. Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging. Biomed Opt Express, 2, 1674-1686(2011).

    [69] F Felberer, J S Kroisamer, B Baumann, et al. Adaptive optics SLO/OCT for 3D imaging of human photoreceptors in vivo. Biomed Opt Express, 5, 439-456(2014).

    [70] O P Kocaoglu, S Lee, R S Jonnal, et al. Imaging cone photoreceptors in three dimensions and in time using ultrahigh resolution optical coherence tomography with adaptive optics. Biomed Opt Express, 2, 748-763(2011).

    [71] M Azimipour, R J Zawadzki, I Gorczynska, et al. Intraframe motion correction for raster-scanned adaptive optics images using strip-based cross-correlation lag biases. PLOS ONE, 13, e0206052(2018).

    [72] O P Kocaoglu, R D Ferguson, R S Jonnal, et al. Adaptive optics optical coherence tomography with dynamic retinal tracking. Biomed Opt Express, 5, 2262-2284(2014).

    [73] P Bedggood, M Daaboul, R Ashman, et al. Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging. Biomed Opt, 13, 024008(2008).

    [74] J Thaung, P Knutsso. Dual-conjugate adaptive optics for wide-field high-resolution retinal imaging. Opt Express, 17, 4454-4467(2009).

    [75] T Klein, W Wieser, C M Eigenwillig, et al. Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser. Opt Express, 19, 3044-3062(2011).

    [76] S Bonora, R J Zawadzki. Wavefront sensorless modal deformable mirror correction in adaptive optics optical coherence tomography. Opt Lett, 38, 4801-4804(2013).

    [77] K S Wong, Y Jian, M Cua, et al. In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography. Biomed Opt Express, 6, 580-590(2015).

    [78] P Xiao, M Fink, A C Boccara. Adaptive optics full-field optical coherence tomography. Biomed Opt, 21, 121505(2016).

    [79] S Bonora, Y Jian, P Zhang, et al. Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated multi-actuator adaptive lens. Opt Express, 23, 21931-21941(2015).

    [80] H R G W Verstraete, S Wahls, J Kalkman, et al. Model-based sensor-less wavefront aberration correction in optical coherence tomography. Opt Lett, 40, 5722-5725(2015).

    [81] J Polans, B Keller, O M Carrasco Zevallos, et al. Wide-field retinal optical coherence tomography with wavefront sensorless adaptive optics for enhanced imaging of targeted regions. Biomed Opt Express, 8, 16-37(2017).

    [82] H R G W Verstraete, M Heisler, M J Ju, et al. Wavefront sensorless adaptive optics OCT with the DONE algorithm for in vivo human retinal imaging. Biomedical Optics Express, 8, 2261(2017).

    [83] A Kumar, T Kamali, R Platzer, et al. Anisotropic aberration correction using region of interest based digital adaptive optics in Fourier domain OCT. Biomed Opt Express, 6, 1124-1134(2015).

    [84] P Pande, Y Z Liu, F A South, et al. Automated computational aberration correction method for broadband interferometric imaging techniques. Opt Lett, 41, 3324-3327(2016).

    [85] Y Xu, Y Z Liu, S A Boppart, et al. Automated interferometric synthetic aperture microscopy and computational adaptive optics for improved optical coherence tomography. Appl Opt, 55, 2034-2041(2016).

    [86] D Hillmann, H Spahr, C Hain, et al. Aberration free volumetric high-speed imaging of in vivo retina. Sci Rep, 6, 35209(2016).

    [87] P Xiao, M Fink, A C Boccara. Full-field spatially incoherent illumination interferometry: a spatial resolution almost insensitive to aberrations. Opt Lett, 41, 3920-3923(2016).

    [88] Laurin Ginner, Tilman Schmoll, Abhishek Kumar, et al. Holographic line field En-face OCT with digital adaptive optics in the retina in vivo. Biomedical Optics Express, 9, 472-485(2018).

    [89] F A South, K Kurokawa, Z Liu, et al. Combined hardware and computational optical wavefront correction. Biomed Opt Express, 9, 2562-2574(2018).

    [90] P D Y Graciano, A Angulo, D Lopez-Mago, et al. Spectrally-resolved Hong-Ou-Mandel interferometry for quantum-optical coherence tomography. Photonics Research, 8, 1023-1034(2020).

    Tools

    Get Citation

    Copy Citation Text

    Wenqiang Fan, Zhichen Wang, Baogang Chen, Tao Chen, Qichang An. Application of adaptive optics coherence tomography in retinal high resolution imaging[J]. Infrared and Laser Engineering, 2020, 49(10): 20200333

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Adaptive optics

    Received: Sep. 6, 2020

    Accepted: --

    Published Online: Jul. 6, 2021

    The Author Email: An Qichang (anjj@mail.ustc.edu.cn)

    DOI:10.3788/IRLA20200333

    Topics