Electronics Optics & Control, Volume. 31, Issue 12, 55(2024)
A UAV Aerial Target Detection Algorithm Based on Improved YOLOv8s
[1] [1] JAEGER P F, KOHL S A A, BICKELHAUPT S, et al. Retina U-Net: embarrassingly simple exploitation of segmentation supervision for medical object detection[J]. Machine Learning for Health Workshop, 2020, 116: 171-183.
[2] [2] LI Z L, DONG M H, WEN S P, et al. CLU-CNNs: object detection for medical images[J]. Neurocomputing, 2019, 350: 53-59.
[3] [3] FENG D, HAASE-SCHUTZ C, ROSENBAUM L, et al. Deep multi-modal object detection and semantic segmentation for autonomous driving: datasets, methods, and challenges[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 22(3): 1341-1360.
[4] [4] LI B Y, OUYANG W L, SHENG L, et al. GS3D: an efficient 3D object detection framework for autonomous driving[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach: IEEE, 2019: 1019-1028.
[5] [5] KARAOGUZ H, JENSFELT P. Object detection approach for robot grasp detection[C]//IEEE International Conference on Robotics and Automation (ICRA). Montreal: IEEE, 2019: 4953-4959.
[6] [6] PAUL S K, CHOWDHURY M T, NICOLESCU M, et al. Object detection and pose estimation from RGB and depth data for real-time, adaptive robotic grasping[C]//Advances in Computer Vision and Computational Biology. Cham: Springer, 2021: 121-142.
[7] [7] ZHANG Y F, SUN P Z, JIANG Y, et al. BYTETrack: multi-object tracking by associating every detection box[C]//European Conference on Computer Vision (ECCV). Cham: Springer, 2022: 1-21.
[8] [8] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu: IEEE, 2017: 6517-6525.
[9] [9] REDMON J, FARHADI A. YOLOv3: an incremental improvement[R]. Los Alamos: arXiv Preprint, 2018: arXiv: 1804.02767.
[10] [10] MSEDDI W S, GHALI R, JMAL M, et al. Fire detection and segmentation using YOLOv5 and U-NET[C]//29th European Signal Processing Conference. Dublin: IEEE, 2021: 741-745.
[11] [11] CHEN Q, WANG Y M, YANG T, et al. You only look one-level feature[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nash-ville: IEEE, 2021: 13034-13043.
[12] [12] ITTI L, KOCH C, NIEBUR E. A model of saliency-based visual attention for rapid scene analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11): 1254-1259.
[13] [13] CORBETTA M, SHULMAN G L. Control of goal-directed and stimulus-driven attention in the brain[J]. Nature Reviews Neuroscience, 2022, 3(3): 201-215.
[14] [14] LAROCHELLE H, HINTON G. Learning to combine foveal glimpses with a third-order boltzmann machine[C]//Proceeding of Neural Information Processing Systems. New York: Curran Associates Inc., 2010: 1243-1251.
[15] [15] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City: IEEE, 2018: 7132-7141.
[16] [16] WANG Q L, WU B G, ZHU P F, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle: IEEE, 2020: 11534-11542.
[17] [17] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//European Conference on Computer Vision (ECCV). Cham: Springer, 2018: 3-19.
[18] [18] FU J, LIU J, TIAN H J, et al. Dual attention network for scene segmentation[C]//IEEE/CVF conference on computer Vision and Pattern Recognition (CVPR). Long Beach: IEEE, 2019: 3146-3154.
[19] [19] ZHANG H, ZU K K, LU J, et al. EPSANet: an efficient pyramid squeeze attention block on convolutional neural network[C]//Asian Conference on Computer Vision. Cham: Springer, 2022: 541-557.
[20] [20] LIN M, CHEN Q, YAN S C. Network in network[R]. Los Alamos: arXiv Preprint, 2013: arXiv: 1312.4400.
[21] [21] SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston: IEEE, 2015: 1-9.
[22] [22] HAN K, WANG Y H, TIAN Q, et al. GhostNet: more features from cheap operations[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle: IEEE, 2020: 1577-1586.
[23] [23] ZHANG H, WU C R, ZHANG Z Y, et al. Split-attention networks[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans: IEEE, 2022: 2736-2746.
[24] [24] LIU Z, MAO H Z, WU C Y, et al. A ConvNet for the 2020s[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans: IEEE, 2022: 11976-11986.
[25] [25] LUO X D, WU Y Q, WANG F Y, et al. Target detection method of UAV aerial imagery based on improved YOLOv5[J]. Remote Sensing, 2022, 14(19): 5063.
[26] [26] DU B W, HUANG Y H, CHEN J X, et al. Adaptive sparse convolutional networks with global context enhancement for faster object detection on drone image[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Vancouver: IEEE, 2023: 13435-13444.
[27] [27] DENG F M, XIE Z X, MAO W, et al. Research on edge intelligent recognition method oriented to transmission line insulator fault detection[J]. International Journal of Electrical Power & Energy Systems, 2022, 139: 108054.
[28] [28] HOWARD A, SANDLER M, CHEN B, et al. Searching for MobileNetV3[C]//IEEE/CVF International Conference on Computer Vision (ICCV). Seoul: IEEE, 2019: 1314-1324.
[29] [29] LIU Y J, YANG F B, HU P. Small-object detection in UAV-captured images via multi-branch parallel feature pyramid network[J]. IEEE Access, 2020, 8: 145740-145750.
[30] [30] LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//IEEE Conferenceon Computer Vision and Pattern Recognition (CVPR). Honolulu: IEEE, 2017: 936-944.
[31] [31] LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City: IEEE, 2018: 8759-8768.
[32] [32] ZHANG X, LIU C, YANG D G, et al. RFAConv: innovating spatial attention and standard convolutional operation[R]. Los Alamos: arXiv Preprint, 2023: arXiv: 2304.03198.
[33] [33] ZHU P F, WEN L Y, DU D W, et al. Detection and tracking meet drones challenge[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence.2021: 7380-7399.
[34] [34] BELLO I, ZOPH B, LE Q, et al. Attention augmented convolutional networks[C]//IEEE/CVF International Conference on Computer Vision (ICCV). Seoul: IEEE, 2019: 3286-3295.
[35] [35] SRINIVAS A, LIN T Y, PARMAR N, et al. Bottleneck transformers for visual recognition[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville: IEEE, 2021: 16514-16524.
[36] [36] HOWARD A G, ZHU M L, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[R]. Los Alamos: arXiv Preprint, 2017: arXiv: 1704.04861.
[37] [37] IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]//International Conference on Machine Learning. Lille: JMLR.org, 2015, 37: 448-456.
[38] [38] ELFWING S, UCHIBE E, DOYA K. Sigmoid-weighted linear units for neural network function approximation in reinforcement learning[J]. Neural Networks, 2018, 107: 3-11.
[39] [39] ZHENG Z H, WANG P, REN D W, et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation[J]. IEEE Transactions on Cybernetics, 2022, 52(8): 8574-8586.
[40] [40] REZATOFIGHI H, TSOI N, GWAK J Y, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach: IEEE, 2019: 658-
[41] [41] ZHENG Z H, WANG P, LIU W, et al. Distance-IoU Loss: faster and better learning for bounding box regression[C]//AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2020: 12993-13000.
[42] [42] ZHANG Y F, REN W Q, ZHANG Z, et al. Focal and efficient IoU Loss for accurate bounding box regression[J]. Neurocomputing, 2022, 506: 146-157.
[43] [43] XIA G S, BAI X, DING J, et al. DOTA: a large-scale dataset for object detection in aerial images[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City: IEEE, 2018: 3974-3983.
Get Citation
Copy Citation Text
SHEN Haiyun, XIAO Zhangyong, GUO Yong, CHEN Jianyu. A UAV Aerial Target Detection Algorithm Based on Improved YOLOv8s[J]. Electronics Optics & Control, 2024, 31(12): 55
Category:
Received: Dec. 20, 2023
Accepted: Dec. 25, 2024
Published Online: Dec. 25, 2024
The Author Email: