Journal of the Chinese Ceramic Society, Volume. 52, Issue 6, 1969(2024)

Effect of Sm Doping on Microstructure of SiBCN Ceramics and Its Microwave Attenuation Performance

YANG Quan... LI Xiangcheng*, CHEN Pingan, ZHU Yingli and ZHU Boquan |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(29)

    [1] [1] Zhang H, Cheng J, Wang H, et al. Initiating VB‐Group Laminated NbS2 Electromagnetic Wave Absorber toward Superior Absorption Bandwidth as Large as 6.48 GHz through Phase Engineering Modulation[J]. Adv. Funct. Mater, 2021, 32(6): 210894

    [2] [2] LIU H Q, ZHANG Y B, LIU X M, et al. Additive manufacturing of nanocellulose/polyborosilazane derived CNFs-SiBCN ceramic metamaterials for ultra-broadband electromagnetic absorption[J]. Chem Eng J, 2022, 433: 133743.

    [3] [3] MENG X M, ZHANG X J, LU C, et al. Enhanced absorbing properties of three-phase composites based on a thermoplastic-ceramic matrix (BaTiO3 + PVDF) and carbon black nanoparticles[J]. J Mater Chem A, 2014, 2(44): 18725-18730.

    [4] [4] ZHANG Y, HUANG Y, ZHANG T F, et al. Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam[J]. Adv Mater, 2015, 27(12): 2049-2053.

    [5] [5] SUN R L, YAN G L, ZHANG X L, et al. Fe-ZIF-derived hollow porous carbon nanofibers for electromagnetic wave absorption[J]. Chem Eng J, 2023, 455: 140608.

    [6] [6] LIU N, ZHANG X Y, DOU Y Y, et al. Design of carbon aerogels with variable surface morphology for electromagnetic wave absorption[J]. Carbon, 2022, 200: 271-280.

    [7] [7] TAHIR D, HERYANTO H, ILYAS S, et al. Excellent electromagnetic wave absorption of Co/Fe2O3 composites by additional activated carbon for tuning the optical and the magnetic properties[J]. J Alloys Compd, 2021, 864: 158780.

    [8] [8] LIU X J, DUAN Y P, YANG X, et al. Enhancement of magnetic properties in FeCoNiCr0.4CuX high entropy alloys through the cocktail effect for megahertz electromagnetic wave absorption[J]. J Alloys Compd, 2021, 872: 159602.

    [9] [9] WANG Y P, HUI Z Z, HAO G Z, et al. Structural and component optimization of conventional magnetic material Co to synthesis dendritic-like FeCo and rose-like CoNi toward high-performance electromagnetic wave absorption[J]. J Mater Res Technol, 2022, 19: 418-430.

    [10] [10] JIANG B, QI C L, YANG H, et al. Recent advances of carbon-based electromagnetic wave absorption materials facing the actual situations[J]. Carbon, 2023, 208: 390-409.

    [11] [11] ZHANG F, JIA Z R, ZHOU J X, et al. Metal-organic framework-derived carbon nanotubes for broadband electromagnetic wave absorption[J]. Chem Eng J, 2022, 450: 138205.

    [12] [12] ZHAO Z B, KANG B, XU J, et al. N-doped carbon hollow spheres supported N-doped carbon nanotubes for efficient electromagnetic wave absorption[J]. Carbon, 2023, 209: 117995.

    [13] [13] CHEN P G, LI W, LI X C, et al. Effect of boron content on the microstructure and electromagnetic properties of SiBCN ceramics[J]. Ceram Int, 2022, 48(3): 3037-3050.

    [14] [14] RIEDEL R, KIENZLE A, DRESSLER W, et al. A silicoboron carbonitride ceramic stable to 2 000 ℃[J]. Nature, 1996, 382(6594): 796-798.

    [15] [15] LUO C J, TANG Y S, JIAO T, et al. High-temperature stable and metal-free electromagnetic wave-absorbing SiBCN ceramics derived from carbon-rich hyperbranched polyborosilazanes[J]. ACS Appl Mater Interfaces, 2018, 10(33): 28051-28061.

    [16] [16] LI W, LI X C, GONG W, et al. Construction of multiple heterogeneous interface and its effect on microwave absorption of SiBCN ceramics[J]. Ceram Int, 2020, 46(6): 7823-7832.

    [17] [17] ZHANG B J, LIU Y, LI X L, et al. Closed-cell ZrO2/SiC-based composite nanofibers with efficient electromagnetic wave absorption and thermal insulation properties[J]. J Alloys Compd, 2022, 927: 167036.

    [18] [18] WANG J Y, ZHOU J T, VAN ZALINGE H, et al. Hollow SiC@MnO2 nanospheres with tunable core size and shell thickness for excellent electromagnetic wave absorption[J]. Chem Eng J, 2023, 471: 144769.

    [19] [19] XU B K, HE Q C, WANG Y Q, et al. Hollow porous Ni@SiC nanospheres for enhancing electromagnetic wave absorption[J]. Ceram Int, 2023, 49(13): 21335-21345.

    [20] [20] CHEN Q Q, LI D X, YANG Z H, et al. SiBCN-reduced graphene oxide (rGO) ceramic composites derived from single-source-precursor with enhanced and tunable microwave absorption performance[J]. Carbon, 2021, 179: 180-189.

    [21] [21] BIESIEKIERSKI A, LI Y C, WEN C E. The application of the rare earths to magnesium and titanium metallurgy in Australia[J]. Adv Mater, 2020, 32(18): e1901715.

    [22] [22] BOONLAKHORN J, SUKSANGRAT P, CHANLEK N, et al. Dielectric properties with high dielectric permittivity and low loss tangent and nonlinear electrical response of sol-gel synthesized Na1/2Sm1/2Cu3Ti4O12 perovskite ceramic[J]. J Eur Ceram Soc, 2022, 42(13): 5659-5668.

    [23] [23] MENG Y Q, GAO J, HUANG H, et al. A high-performance reversible protonic ceramic electrochemical cell based on a novel Sm-doped BaCe0.7Zr0.1Y0.2O3-δ electrolyte[J]. J Power Sources, 2019, 439: 227093.

    [24] [24] WANG T, SU C H, ZHANG H B, et al. Enhancing the orange luminescence behavior of the Li+ co-doped Ca2Ti2O6: Sm3+ transparent glass-ceramic[J]. J Non Cryst Solids, 2022, 581: 121437.

    [25] [25] QIAN X, ZHOU Q A, NI L Z. Preceramic polymer as precursor for near-stoichiometric silicon carbon with high ceramic yield[J]. J Appl Polym Sci, 2015, 132(4): 41335.

    [26] [26] WANG K W, MA B S, LI X Q, et al. Structural evolutions in polymer-derived carbon-rich amorphous silicon carbide[J]. J Phys Chem A, 2015, 119(4): 552-558.

    [27] [27] WEN Q B, YU Z J, RIEDEL R. The fate and role of in situ formed carbon in polymer-derived ceramics[J]. Prog Mater Sci, 2020, 109: 100623.

    [28] [28] ZHANG H X, JIA Z R, FENG A L, et al. In situ deposition of pitaya-like Fe3O4@C magnetic microspheres on reduced graphene oxide nanosheets for electromagnetic wave absorber[J]. Compos Part B Eng, 2020, 199: 108261.

    [29] [29] SHANG T, LU Q S, CHAO L M, et al. Effects of ordered mesoporous structure and La-doping on the microwave absorbing properties of CoFe2O4[J]. Appl Surf Sci, 2018, 434: 234-242.

    Tools

    Get Citation

    Copy Citation Text

    YANG Quan, LI Xiangcheng, CHEN Pingan, ZHU Yingli, ZHU Boquan. Effect of Sm Doping on Microstructure of SiBCN Ceramics and Its Microwave Attenuation Performance[J]. Journal of the Chinese Ceramic Society, 2024, 52(6): 1969

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Sep. 26, 2023

    Accepted: --

    Published Online: Aug. 26, 2024

    The Author Email: Xiangcheng LI (lixiangcheng@wust.edu.cn)

    DOI:10.14062/j.issn.0454-5648.20230741

    Topics