Journal of Innovative Optical Health Sciences, Volume. 11, Issue 1, 1730002(2018)

Super-resolution fluorescence polarization microscopy

Karl Zhanghao1,2, Juntao Gao3,4, Dayong Jin5, Xuedian Zhang1,2、*, and and Peng Xi1,2,5
Author Affiliations
  • 1Department of Biomedical Engineering, College of Engineering Peking University, China
  • 2School of Optical-Electronic and Computer Engineering Shanghai University of Science and Technology, China
  • 3Department of Automation, Tsinghua University, Beijing 100084, China
  • 4Bioinfomatics Division, TNLIST MOE Key Laboratory of Bioinformatics and Center for Synthetic & System Biology, Tsinghua University, Beijing 100084, China
  • 5Faculty of Science, Institute for Biomedical Materials and Devices (IBMD) University of Technology, Australia
  • show less
    References(65)

    [1] [1] M. Kampmann, C. E. Atkinson, A. L. Mattheyses, S. M. Simon, “Mapping the orientation of nuclear pore proteins in living cells with polarized fluorescence microscopy," Nat. Struct. Mol. Biol. 18, 643-649 (2011).

    [2] [2] K. Adachi, R. Yasuda, H. Noji, H. Itoh, Y. Harada, M. Yoshida, K. Kinosita, “Stepping rotation of F-1-ATPase visualized through angle-resolved single-fluorophore imaging," Proc. Natl. Acad. Sci. USA 97, 7243-7247 (2000).

    [3] [3] T. Nishizaka, K. Oiwa, H. Noji, S. Kimura, E. Muneyuki, M. Yoshida, K. Kinosita Jr., “Chemomechanical coupling in F1-ATPase revealed by simultaneous observation of nucleotide kinetics and rotation," Nat. Struct. Mol. Biol. 11, 142-148(2004).

    [4] [4] D. Sabbert, S. Engelbrecht, W. Junge, “Intersubunit rotation in active F-ATPase," Nature 381, 623-625 (1996).

    [5] [5] D. Axelrod, “Carbocyanine dye orientation in red cell membrane studied by microscopic fluorescence polarization," Biophys. J. 26, 557-573 (1979).

    [6] [6] J. F. Lesoine, J. Y. Lee, J. R. Krogmeier, H. Kang, M. L. Clarke, R. Chang, D. L. Sackett, R. Nossal, J. Hwang, “Quantitative scheme for full-field polarization rotating fluorescence microscopy using a liquid crystal variable retarder," Rev. Sci. Instrum. 83, 053705 (2012).

    [7] [7] G. J. Schutz, H. Schindler, T. Schmidt, “Imaging single-molecule dichroism," Opt. Lett. 22, 651-653 (1997).

    [8] [8] D. R. Fooksman, M. Edidin, B. G. Barisas, “Measuring rotational diffusion of MHC class I on live cells by polarized FPR," Biophys. Chem. 130, 10-16 (2007).

    [9] [9] M. Velez, D. Axelrod, “Polarized fluorescence photobleaching recovery for measuring rotational diffusion in solutions and membranes," Biophys. J. 53, 575-591 (1988).

    [10] [10] R. K. P. Benninger, B. Onfelt, M. A. A. Neil, D. M. Davis, P. M. W. French, “Fluorescence imaging of two-photon linear dichroism: Cholesterol depletion disrupts molecular orientation in cell membranes," Biophys. J. 88, 609-622 (2005).

    [11] [11] A. Kress, X. Wang, H. Ranchon, J. Savatier, H. Rigneault, P. Ferrand, S. Brasselet, “Mapping the local organization of cell membranes using excitation-polarization-resolved confocal fluorescence microscopy," Biophys. J. 105, 127-136 (2013).

    [12] [12] J. Lazar, A. Bondar, S. Timr, S. J. Firestein, “Twophoton polarization microscopy reveals protein structure and function," Nat. Methods 8, 684-690 (2011).

    [13] [13] K. Kinosita Jr., H. Itoh, S. Ishiwata, K. Hirano, T. Nishizaka, T. Hayakawa, “Dual-view microscopy with a single camera: Real-time imaging of molecular orientations and calcium," J. Cell Biol. 115, 67-73 (1991).

    [14] [14] E. Betzig, R. J. Chichester, “Single molecules observed by near-field scanning optical microscopy (Nsom)," Biophys. J. 66, A277-A277 (1994).

    [15] [15] N. Hafi, M. Grunwald, L. S. van den Heuvel, T. Aspelmeier, J.-H. Chen, M. Zagrebelsky, O. M. Schütte, C. Steinem, M. Korte, A. Munk et al., “Fluorescence nanoscopy by polarization modulation and polarization angle narrowing," Nat. Methods 11, 579-584 (2014).

    [16] [16] S. B. Mehta, M. McQuilken, P. J. La Riviere, P. Occhipinti, A. Verma, R. Oldenbourg, A. S. Gladfelter, T. Tani, “Dissection of molecular assembly dynamics by tracking orientation and position of single molecules in live cells," Proc. Natl. Acad. Sci. 113, E6352-E6361 (2016).

    [17] [17] C. A. Valades Cruz, H. A. Shaban, A. Kress, N. Bertaux, S. Monneret, M. Mavrakis, J. Savatier, S. Brasselet, “Quantitative nanoscale imaging of orientational order in biological filaments by polarized superresolution microscopy," Proc. Natl. Acad. Sci. 113, E820-E828 (2016).

    [18] [18] K. Zhanghao, L. Chen, X.-S. Yang, M.-Y. Wang, Z.-L. Jing, H.-B. Han, M. Q. Zhang, D. Jin, J.-T. Gao, P. Xi, “Super-resolution dipole orientation mapping via polarization demodulation," Light Sci. Appl. 5, e16166 (2016).

    [19] [19] J. N. Forkey, M. E. Quinlan, M. A. Shaw, J. E. Corrie, Y. E. Goldman, “Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization," Nature 422, 399-404 (2003).

    [20] [20] M. Irving, T. St Claire Allen, C. Sabido-David, J. S. Craik, B. Brandmeier, J. Kendrick-Jones, J. E. Corrie, D. R. Trentham, Y. E. Goldman, “Tilting of the light-chain region of myosin during step length changes and active force generation in skeletal muscle," Nature 375, 688-691 (1995).

    [21] [21] C. Sabido-David, S. C. Hopkins, L. D. Saraswat, S. Lowey, Y. E. Goldman, M. Irving, “Orientation changes of fluorescent probes at five sites on the myosin regulatory light chain during contraction of single skeletal muscle fibres," J. Mol. Biol. 279, 387-402 (1998).

    [22] [22] I. Sase, H. Miyata, S. Ishiwata, K. Kinosita, “Axial rotation of sliding actin filaments revealed by single-fluorophore imaging," Proc. Natl. Acad. Sci. USA 94, 5646-5650 (1997).

    [23] [23] E. Toprak, J. Enderlein, S. Syed, S. A. McKinney, R. G. Petschek, T. Ha, Y. E. Goldman, P. R. Selvin, “Defocused orientation and position imaging (DOPI) of myosin V," Proc. Natl. Acad. Sci. 103, 6495-6499 (2006).

    [24] [24] D. M. Warshaw, E. Hayes, D. Gaffney, A. M. Lauzon, J. R. Wu, G. Kennedy, K. Trybus, S. Lowey, C. Berger, “Myosin conformational states determined by single fluorophore polarization," Proc. Natl. Acad. Sci. USA 95, 8034-8039 (1998).

    [25] [25] H. Sosa, E. J. G. Peterman, W. E. Moerner, L. S. B. Goldstein, “ADP-induced rocking of the kinesin motor domain revealed by single-molecule fluorescence polarization microscopy," Nat. Struct. Biol. 8, 540-544 (2001).

    [26] [26] S. Abrahamsson, M. McQuilken, S. B. Mehta, A. Verma, J. Larsch, R. Ilic, R. Heintzmann, C. I. Bargmann, A. S. Gladfelter, R. Oldenbourg, “MultiFocus Polarization Microscope (MF-Pol-Scope) for 3D polarization imaging of up to 25 focal planes simultaneously," Opt. Express 23, 7734-7754 (2015).

    [27] [27] B. S. DeMay, X. Bai, L. Howard, P. Occhipinti, R. A. Meseroll, E. T. Spiliotis, R. Oldenbourg, A. S. Gladfelter, “Septin filaments exhibit a dynamic, paired organization that is conserved from yeast to mammals, Septin filaments exhibit a dynamic, paired organization that is conserved from yeast to mammals," J. Cell Biol. 193, 1065-1081 (2011).

    [28] [28] B. S. DeMay, N. Noda, A. S. Gladfelter, R. Oldenbourg, “Rapid and quantitative imaging of excitation polarized fluorescence reveals ordered septin dynamics in live yeast," Biophys. J. 101, 985-994 (2011).

    [29] [29] A. M. Vrabioiu, T. J. Mitchison, “Structural insights into yeast septin organization from polarized fluorescence microscopy," Nature 443, 466-469 (2006).

    [30] [30] T. Ha, T. Enderle, S. Chemla, R. Selvin, S. Weiss, “Single molecule dynamics studied by polarization modulation," Phys. Rev. Lett. 77, 3979-3982 (1996).

    [31] [31] G. Steinbach, I. Pomozi, D. P. Jáanosa, J. Makovitzky, G. Garab, “Confocal fluorescence detected linear dichroism imaging of isolated human amyloid fibrils. Role of supercoiling," J. Fluoresc. 21, 983-989 (2011).

    [32] [32] X. Wang, A. Kress, S. Brasselet, P. Ferrand, “High frame-rate fluorescence confocal angle-resolved linear dichroism microscopy," Rev. Sci. Instrum. 84, 053708 (2013).

    [33] [33] P. Ferrand, P. Gasecka, A. Kress, X. Wang, F. Z. Bioud, J. Duboisset, S. Brasselet, “Ultimate use of two-photon fluorescence microscopy to map orientational behavior of fluorophores," Biophys. J. 106, 2330-2339 (2014).

    [34] [34] A. Gasecka, T. J. Han, C. Favard, B. R. Cho, S. Brasselet, “Quantitative imaging of molecular order in lipid membranes using two-photon fluorescence polarimetry," Biophys. J. 97, 2854-2862 (2009).

    [35] [35] W. Li, Y. Wang, H. R. Shao, Y. H. He, H. Ma, “Probing rotation dynamics of biomolecules using polarization based fluorescence microscopy," Microsc. Res. Techniq. 70, 390-395 (2007).

    [36] [36] J. R. Lakowicz, “Principles of fluorescence spectroscopy," J. Biomed. Opt. 13, 029901 (2008).

    [37] [37] P. R. Callis, “The theory of two-photon-induced fluorescence anisotropy," In Topics in Fluorescence Spectroscopy, Vol. 5: Nonlinear and Two-Photon-Induced Fluorescence, J. R. Lakowicz, ed. (Boston, MA: Springer US), pp. 1-42 (2002).

    [38] [38] S. Y. Chen, B. W. Van Der Meer, “Theory of twophoton induced fluorescence anisotropy decay in membranes," Biophys. J. 64, 1567-1575 (1993).

    [39] [39] J. N. Forkey, M. E. Quinlan, Y. E. Goldman, “Protein structural dynamics by single-molecule fluorescence polarization," Prog. Biophys. Mol. Biol. 74, 1-35 (2000).

    [40] [40] G. Weber, “Polarization of the fluorescence of macromolecules. I. Theory and experimental method," Biochem. J. 51, 145-155 (1952).

    [41] [41] M. Ohmachi, Y. Komori, A. H. Iwane, F. Fujii, T. Jin, T. Yanagida, “Fluorescence microscopy for simultaneous observation of 3D orientation and movement and its application to quantum rod-tagged myosin V," Proc. Natl. Acad. Sci. U S A 109, 5294-5298 (2012).

    [42] [42] J. Jasny, J. Sepiol, “Single molecules observed by immersion mirror objective. A novel method of finding the orientation of a radiating dipole," Chem. Phys. Lett. 273, 439-443 (1997).

    [43] [43] J. Sepiol, J. Jasny, J. Keller, U. P. Wild, “ingle molecules observed by immersion mirror objective. The orientation of terrylene molecules via the direction of its transition dipole moment," Chem. Phys. Lett. 273, 444-448 (1997).

    [44] [44] A. P. Bartko, R. M. Dickson, “Imaging threedimensional single molecule orientations," J. Phys. Chem. B 103, 11237-11241 (1999).

    [45] [45] M. Bohmer, J. Enderlein, “Orientation imaging of single molecules by wide-field epifluorescence microscopy," J. Opt. Soc. Am. B 20, 554-559 (2003).

    [46] [46] D. Patra, I. Gregor, J. Enderlein, “Image analysis of defocused single-molecule images for three-dimensional molecule orientation studies," J. Phys. Chem. A 108, 6836-6841 (2004).

    [47] [47] Y. Sun, H. W. Schroeder, J. F. Beausang, K. Homma, M. Ikebe, Y. E. Goldman, “Myosin VI walks “wiggly" on actin with large and variable tilting," Mol. Cell 28, 954-964 (2007).

    [48] [48] M. P. Backlund, M. D. Lew, A. S. Backer, S. J. Sahl, G. Grover, A. Agrawal, R. Piestun, W. E. Moerner, “Simultaneous, accurate measurement of the 3D position and orientation of single molecules," Proc. Natl. Acad. Sci. USA 109, 19087-19092 (2012).

    [49] [49] M. Tokunaga, N. Imamoto, K. Sakatasogawa, “Highly inclined thin illumination enables clear single-molecule imaging in cells," Nat. Methods 5, 159 (2008).

    [50] [50] Y. Sun, O. Sato, F. Ruhnow, M. E. Arsenault, M. Ikebe, Y. E. Goldman, “Single-molecule stepping and structural dynamics of myosin X," Nat. Struct. Mol. Biol. 17, 485-491 (2010).

    [51] [51] S. Inouáe, O. Shimomura, M. Goda, M. Shribak, P. T. Tran, “Fluorescence polarization of green fluorescence protein," Proc. Natl. Acad. Sci. 99, 4272-4277 (2002).

    [52] [52] N. Hafi, M. Grunwald, L. S. van den Heuvel, T. Aspelmeier, C. Steinem, M. Korte, A. Munk, P. J. Walla, “Reply to polarization modulation adds little additional information to super-resolution fluorescence microscopy," Nat. Methods 13, 8-9 (2016).

    [53] [53] E. Abbe, “Beitr ge zur theorie des mikroskopsageund der mikroskopischen Wahrnehmung," Arch. Mikrosk. Anat. 9, 413-418 (1873).

    [54] [54] S. W. Hell, J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: Stimulatedemission-depletion fluorescence microscopy," Opt. Lett. 19, 780-782 (1994).

    [55] [55] T. A. Klar, S. Jakobs, M. Dyba, A. Egner, S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission," Proc. Natl. Acad. Sci. USA 97, 8206-8210 (2000).

    [56] [56] D. Dan, M. Lei, B. L. Yao, W. Wang, M. Winterhalder, A. Zumbusch, Y. J. Qi, L. Xia, S. H. Yan, Y. L. Yang, P. Gao, T. Ye, W. Zhao, “DMD-based LED-illumination Super-resolution and optical sectioning microscopy," Sci. Rep.-Uk 3 (2013).

    [57] [57] M. G. Gustafsson, “Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution," Proc. Natl. Acad. Sci. USA 102, 13081-13086 (2005).

    [58] [58] M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy," J. Microsc.-Oxford 198, 82-87 (2000).

    [59] [59] E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution," Science 313, 1642-1645 (2006).

    [60] [60] S. T. Hess, T. P. Girirajan, M. D. Mason, “Ultrahigh resolution imaging by fluorescence photoactivation localization microscopy," Biophys. J. 91, 4258-4272 (2006).

    [61] [61] Z. L. Huang, H. Y. Zhu, F. Long, H. Q. Ma, L. S. Qin, Y. F. Liu, J. P. Ding, Z. H. Zhang, Q. M. Luo, S. Q. Zeng, “Localization-based super-resolution microscopy with an sCMOS camera," Opt. Express 19, 19156-19168 (2011).

    [62] [62] M. J. Rust, M. Bates, X. W. Zhuang, “Subdi ffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)," Nat. Methods 3, 793-795 (2006).

    [63] [63] L. Frahm, J. Keller, “Polarization modulation adds little additional information to super-resolution fluorescence microscopy," Nat. Methods 13, 7-8 (2016).

    [64] [64] K. Ong, C. Wloka, S. Okada, T. Svitkina, E. Bi, Architecture and dynamic remodelling of the septin cytoskeleton during the cell cycle," Nat. Commun. 5, 56-98 (2014).

    [65] [65] R. Yasuda, H. Noji, M. Yoshida Jr., K. Kinosita, H. Itoh, “Resolution of distinct rotational substeps by submillisecond kinetic analysis of F1-ATPase," Nature 410, 898-904 (2001).

    Tools

    Get Citation

    Copy Citation Text

    Karl Zhanghao, Juntao Gao, Dayong Jin, Xuedian Zhang, and Peng Xi. Super-resolution fluorescence polarization microscopy[J]. Journal of Innovative Optical Health Sciences, 2018, 11(1): 1730002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Mar. 28, 2017

    Accepted: May. 8, 2017

    Published Online: Sep. 17, 2018

    The Author Email: Zhang Xuedian (zhangxuedian@hotmail.com)

    DOI:

    Topics