Optics and Precision Engineering, Volume. 26, Issue 5, 1175(2018)
Time-domain denoising based on photon-counting LiDAR
[1] [1] KIRMANIA, VENKATRAMAN D, SHIN D, et al.. First-photon imaging [J]. Science, 2014, 343(6166): 58-61.
[2] [2] SHIND, KIRMANI A, COLACO A, et al.. Parametric Poisson process imaging [C]. Proceedings of 2013 IEEE Global Conference on Signal and Information Processing, IEEE, 2013: 1053-1056.
[3] [3] KIRMANIA, COLAO A, SHIN D, et al.. Spatio-temporal regularization for range imaging with high photon efficiency [J]. Proceedings of SPIE, 2013, 8858: 88581F.
[4] [4] KONG H J, KIM T H, JO S E, et al.. Smart three-dimensional imaging LADAR using two Geiger-mode avalanche photodiodes [J]. Optics Express, 2011, 19(20): 19323-19329.
[5] [5] ZHANG Z J, ZHAO Y, ZHANG Y, et al.. A real-time noise filtering strategy for photon counting 3D imaging Lidar [J]. Optics Express, 2013, 21(8): 9247-9254.
[6] [6] FOUCHED G. Detection and false-alarm probabilities for laser radars that use Geiger-mode detectors [J]. Applied Optics, 2003, 42(27): 5388-5398.
[7] [7] HENRIKSSONM. Detection probabilities for photon-counting avalanche photodiodes applied to a laser radar system [J]. Applied Optics, 2005, 44(24): 5140-5147.
[8] [8] SIMA B Y. Photon-counting laser radar 3d imaging system design and Implementation [D]. Nanjing: Nanjing University of Science and Technology, 2013. (in Chinese)
[9] [9] SNYDERD L. Random Point Processes [M]. New York, NY, USA: Wiley, 1975.
[10] [10] MCCARTHYA, REN X M, FRERA A D, et al.. Kilometer-range depth imaging at 1550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector [J]. Optics Express, 2013, 21(19): 22098-22113.
[11] [11] LIANG Y, HUANG J H, REN M, et al.. 1550-nm time-of-flight ranging system employing laser with multiple repetition rates for reducing the range ambiguity [J]. Optics exprEss, 2014, 22(4): 4662-4670.
[12] [12] ZHOU H, HE Y H, YOU L X, et al.. Few-photon imaging at 1550 nm using a low-timing-jitter superconducting nanowire single-photon detector [J]. Optics Express, 2015, 23(11): 14603-14611.
[13] [13] MASSAJ S, BULLER G S, WALKER A C, et al.. Time-of-flight optical ranging system based on time-correlated single-photon counting [J]. Applied Optics, 1998, 37(31): 7298-7304.
[14] [14] SCHWARZB. LIDAR: Mapping the world in 3D [J]. Nature Photonics, 2010, 4(7): 429-430.
[15] [15] STOKERJ, HARDING D, PARRISH J. The need for a national LIDAR dataset: photogrammetric engineering and remote sensing [J]. Photogrammetric Engineering and Remote Sensing, 2008, 74(9): 1066-1068.
[16] [16] CHEN F, BROWN G M, SONG M. Overview of three-dimensional shape measurement using optical methods [J]. Optical Engineering, 2000, 39(1): 10-22.
[17] [17] UMASUTHANM, WALLACE A M, MASSA J S, et al.. Processing time-correlated single photon counting data to acquire range images [J]. IEE Proceedings-Vision, Image and Signal Process, 1998, 145(4): 237-243.
[18] [18] SHIND, KIRMANI A, GOYAL V K, et al.. Photon-efficient computational 3-D and reflectivity imaging with single-photon detectors [J]. IEEE Transactions on Computational Imaging, 2015, 1(2): 112-125.
Get Citation
Copy Citation Text
LUO le, WU Chang-qiang, LIN Jie, FENG Zhen-chao, HE Wei-ji, CHEN Qian. Time-domain denoising based on photon-counting LiDAR[J]. Optics and Precision Engineering, 2018, 26(5): 1175
Category:
Received: Sep. 30, 2017
Accepted: --
Published Online: Aug. 14, 2018
The Author Email: